Part Number Hot Search : 
BA7042 BF422A3 ISL88706 MJ11033G 0DPBF TC4422CP BUL116 KTC4080
Product Description
Full Text Search
 

To Download ADIS16480 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ten degrees of freedom inertial sensor with dynamic orientation outputs data sheet ADIS16480 rev. 0 information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. specifications subject to change without notice. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trad emarks and registered trademarks are the property of their respective owners. one technology way, p.o. box 9106, norwood, ma 02062 - 9106, u.s.a. tel: 781.329.4700 www.analog.com fax: 781.461.3113 ? 2012 analog devices, inc. all rights reserved. features dynamic angle outputs quaternion, euler, r otation matrix 0.1 (pitch, roll) and 0. 3 (yaw) static accuracy triaxial, digital gyroscope , 450/sec dynamic range < 0.05 orthogonal alignment 6 /h r in - run bias stability 0.3/hr ang ul ar random walk 0 .01% nonlinearity triaxial, digital accelerometer, 1 0 g triaxial, delta angle and delta velocity outputs triaxial, digital magnetometer, 2.5 gauss digital pressure sensor, 300 mbar to 1100 mbar adaptive e xtended kalman f ilter automatic covariance computa tion progr ammable reference reorientation programmable sensor disturbance levels configurable event - driven controls factory - calibrated sensitivity, bias, and axial alignment calibration temperat ure range: ?40c to +70 c spi - compatible serial interface programmable operation and control 4 fir filter banks, 120 configurable taps digital i/o: data - ready alarm indicator, external clock optional external sample clock input: up to 2 .4 khz single - command self - test single - supply operation: 3.0 v to 3.6 v 2000 g shock survivability applications platform stabilization, control , and pointing navigation instrument ation robotics general description the ADIS16480 i sensor? device is a complete inertial system that includes a triaxi al gyroscope, a triaxi al accelerometer , triaxi al magnetometer , pressure sensor , and an e xtended kalman f ilter (ekf) for dynamic orientation sen sing . each inertial sensor in the ADIS16480 combines industry -leading i mems? technology with signal conditioning that optimizes dynamic performance. the factory calibration characterizes each sensor for sensitivity, bias, alignment, and linear acceleration (gyro scope bias). as a result, each sensor has its own dynamic compensation formulas that provide accurate sensor measurements. the sensors are further correlated and processed in the e xtended kalman f ilter, which provides both automatic adaptive filtering, as well as user - programmable tuning. thus , in addition to the imu outpu ts, the device provides stable q uaternion, euler, and r otation matrix outputs in the l ocal navigation frame . the ADIS16480 provides a simple, cost - effective method for integrating accurate, multiaxis inertial sensing into industrial systems, especi ally when compared with the complexity and investment associated with discrete designs. all necessary motion testing and calibration are part of the production process at the factory, greatly reducing system integration time. tight orthogonal alignment simplifies inertial frame alignment in navigation systems. the spi and register structure provide a simple interface for data collection and configuration control. the ADIS16480 uses the same footprint and connector system as the adis16488 , which greatly simplifies the upgrade process. it comes in a module that is approximately 47 mm 44 mm 14 mm and has a standard connector interface. the ADIS16480 provides an operating temperature range of ? 40c to +85c. f unctional b lock d iagram clock triaxial gyro triaxial accel power management cs sclk din dout gnd vdd temp vdd dio1 dio2 dio3 dio4 vddrtc rst spi triaxial magn pressure self-test i/o alarms output data registers user control registers ADIS16480 controller calibration extended kalman filter digital filtering 10278-001 figure 1. www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 2 of 40 t able of contents features .............................................................................................. 1 applications ....................................................................................... 1 general description ......................................................................... 1 functional block diagram .............................................................. 1 revision history ............................................................................... 2 specifications ..................................................................................... 3 timing specifications .................................................................. 6 absolute maximum ratings ............................................................ 7 esd caution .................................................................................. 7 pin configuration and function descriptions ............................. 8 typica l performance characteristics ............................................. 9 basic operation ............................................................................... 10 register structure ....................................................................... 10 spi communication ................................................................... 11 device configuration ................................................................ 11 reading sensor data .................................................................. 11 user registers .................................................................................. 12 output data registers .................................................................... 16 inertial sensor data format ...................................................... 16 rotation rate (gyroscope) ........................................................ 16 acceleration ................................................................................. 17 delta angles ................................................................................ 17 delta velocity .............................................................................. 18 magnetometers ........................................................................... 19 roll, pitch, yaw angles .............................................................. 19 barometer .................................................................................... 21 internal temperature ................................................................. 21 status/alarm indicators ............................................................. 22 firmware revision ...................................................................... 23 product identification ................................................................ 23 digital signal processing ............................................................... 24 gyroscopes/accelerometers ...................................................... 24 averaging/decimation filter .................................................... 24 magnetometer/barometer ......................................................... 24 fir filter banks .......................................................................... 25 extended kalman filter ................................................................. 27 algorithm .................................................................................... 27 covariance terms ....................................................................... 27 reference frame ......................................................................... 28 reference transformation matrix ............................................ 28 declination .................................................................................. 29 adaptive operation .................................................................... 29 calibration ....................................................................................... 30 gyroscopes .................................................................................. 30 accelerometers ........................................................................... 31 magnetometers ........................................................................... 31 barometers .................................................................................. 33 restoring factory calibration .................................................. 33 point of percussion alignment ................................................. 33 alarms .............................................................................................. 34 static alarm use ......................................................................... 34 dynamic alarm use .................................................................. 34 system controls .............................................................................. 36 global commands ..................................................................... 36 memory management ............................................................... 36 general - purpose i/o ................................................................. 37 power management .................................................................... 37 applications information .............................................................. 39 prototype interface board ......................................................... 39 installation tips .......................................................................... 39 outline dimensions ....................................................................... 40 ordering guide .......................................................................... 40 revision history 5/12 revision 0 : initial version www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 3 of 40 specifications t a = 25c, v dd = 3.3 v, angular rate = 0/sec, dynamic range = 45 0/sec 1 g , 300 mbar to 1100 mbar, unless otherwise noted. table 1 . parameter test conditions/comments min typ max unit angle outputs euler dynamic range yaw and r oll (euler) 180 degrees pitch (euler) 90 degrees rotation m atrix, q uaternio n 180 degree sensitivity 0.0055 degrees/lsb static accuracy 1 pitch and r oll 0. 1 degrees yaw 0. 3 degrees dynamic accuracy 1 pitch and roll 0. 3 degrees yaw 0.5 degrees gyroscopes dynami c range 450 480 /sec sensitivity x_gyro_out and x_gyro_low (32 - bit) 3.052 10 ?7 /sec/lsb initial sensitivity tolerance 1 % sensitivity temperature coefficient ? 40c t a +70c, 1 35 ppm/c misalignment axis to axis 0.05 degrees axis to frame (package) 1.0 degrees nonlinearity best - fit straight line, fs = 45 0/sec 0.01 % of fs initial bias error 0.2 /sec in - run bias stability 1 6.25 /hr angular random walk 1 0.3 /hr bias temperature coefficient ? 40c t a +70c, 1 0.0025 /sec/c linear acceleration effect on bias any axis, 1 ( config[7] = 1) 0.009 /sec/ g output noise no filtering 0.16 /sec rms rate noise density f = 25 hz, no filtering 0.0066 /sec/hz rms 3 db bandwidth 330 hz sensor resonant frequency 18 khz accelerometers each axis dynamic range 10 g sensitivity x_accl_out and x_accl_low (32 - bit) 1.221 10 ?8 g /lsb initial sensitivity tolerance 0.5 % sensitivity temperature coefficient ? 40c t a +85c, 1 25 ppm/c misalignment axis to axis 0.035 degrees axis to frame (package) 1.0 degrees nonlinearity best - fit straight line, 10 g 0.1 % of fs initial bias error 16 m g in - run bias stability 1 0.1 m g velocity random walk 1 0.029 m/sec/hr bias temperature coefficient ? 40c t a +85c 0.1 m g /c output no ise no filtering 1.5 m g rms noise density f = 25 hz, no filtering 0.067 m g /hz rms 3 db bandwidth 330 hz sensor resonant frequency 5.5 khz www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 4 of 40 parameter test conditions/comments min typ max unit magnetometer dynamic range 2.5 gauss sensitivity 0.1 mgauss/lsb initial sensitivity tole rance 2 % sensitivity temperature coefficient 1 275 ppm/c misalignment axis to axis 0.25 degrees axis to frame (package) 0.5 degrees nonlinearity best fit straight line 0.5 % of fs initial bias error 0 gauss stimulus 15 mgauss bias temperature coefficient ? 40c t a +85c, 1 0.3 mgauss/c output noise no filtering 0.45 mgauss noise density f = 25 hz, no filtering 0.054 mgauss/hz 3 db bandwidth 330 hz barometer pressure range 300 1100 mbar extended 10 120 0 mbar sensitivity barom_out and barom_low (32 - bit) 6.1 10 ?7 mbar/lsb error with supply 0.04 %/v total error 4.5 mbar relative error 2 ? 40c to +85c 2.5 mbar linearity 3 best fit straight line, fs = 1100 mbar 0.1 % of fs ? 40c to +85c 0.2 % of fs linear -g sensitivity 1 g , 1 0.005 mbar/ g noise 0.025 mbar rms temperature sensor scale factor output = 0x0000 at 25c (5c) 0.00565 c/lsb logic inputs 4 input high voltage, v ih 2.0 v input low voltage, v il 0.8 v cs wake - up pulse width 20 s logic 1 input current, i ih v ih = 3.3 v 10 a logic 0 input current, i il v il = 0 v all pins except rst 10 a rst pin 0.33 ma input capacitance, c in 10 pf digital outputs output high voltage, v oh i source = 0.5 ma 2.4 v output low voltage, v ol i sink = 2.0 ma 0.4 v flash memory endurance 5 100,000 cycles data retention 6 t j = 85c 20 years functional times 7 time until inertial sens or data is available power - on start - up time 400 160 ms reset recovery time 400 1 60 ms sleep mode recovery time 700 s flash memory update time 1.1 6.8 sec flash memory test time 53 ms automatic self - test time using internal cloc k, 100 sps 12 ms conversion rate 2.46 ksps initial clock accuracy 0.02 % temperature coefficient 40 ppm/c sync input clock 8 0.7 2.4 khz www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 5 of 40 parameter test conditions/comments min typ max unit power supply, vdd operating voltage range 3.0 3.6 v power supply current 9 normal mode, vdd = 3.3 v, 254 ma sleep mode, vdd = 3.3 v 12.2 ma power - down mode, vdd = 3.3 v 45 a power supply, vddrtc operating voltage range 3.0 3.6 v real - time clock supply current normal mode, vddrtc = 3.3 v 13 a 1 accuracy specifications assume calibration of ac celerometers and magnetometers to address sensor drift and local influences on magnetic fields. 2 the relative error assumes that the initial error, at 25c, is corrected in the end application. 3 linearity errors assume a full scale (fs) of 1000 mbar. 4 t he digital i/o signals are driven by an internal 3.3 v supply , and the inputs are 5 v tolerant. 5 endurance is qualified as per jedec standard 22 , method a117 , and measured at ?40 c , +25 c , +85 c, and +125 c. 6 the data r etention specification assumes a ju nction temperature (t j ) of 8 5 c as per jedec s tandard 22 , method a117. data r etention lifetime decreases with t j . 7 these times do not include thermal settling, internal filter response times, or ekf start - up times (~825 ms), which may affect overall accur acy, with respect to time. 8 the device functions at clock rates below 0.7 khz, but at reduced performance levels. 9 supply current transients can reach 450 ma for 400 s during start - up and reset recovery. www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 6 of 40 timing specifications t a = 25c, vdd = 3.3 v, unless otherwise noted. table 2. normal mode parameter description min 1 typ max 1 unit f sclk serial clock 0.01 15 mhz t stall stall period between data 2 s t cls serial clock low period 31 ns t chs serial clock high period 31 ns t cs chip select to clock edge 32 ns t dav dout valid after sclk edge 10 ns t dsu din setup time before sc lk rising edge 2 ns t dhd din hold time after sclk rising edge 2 ns t dr , t df dout rise/fall times, 100 pf loading 3 8 ns t dsoe cs assertion to data out active 0 11 ns t hd sclk edge to data out invalid 0 ns t dshi cs deassertion to data out high impedance 0 9 ns t 1 input sync pulse width 5 s t 2 input sync to data-ready output 490 s t 3 input sync period 417 s 1 guaranteed by design and characterization, but not tested in production. timing diagrams cs sclk dout din 1 2 3 4 5 6 15 16 r/w a5 a6 a4 a3 a2 d2 msb db14 d1 lsb db13 db12 db10 db11 db2 lsb db1 t cs t dshi t dav t hd t chs t cls t dsoe t dhd t dsu 10278-002 figure 2. spi timing and sequence cs sclk t stall 10278-003 figure 3. stall time and data rate t 3 t 2 t 1 sync c lock (clkin) data ready output registers data valid data valid 10278-004 figure 4. input clock timing diagram www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 7 of 40 absolute maximum rat ings table 3. parameter rating acceleration any axis, unpowered 2000 g any axis, powered 2000 g v dd to gnd ? 0.3 v to + 3.6 v digital input voltage to gnd ? 0.3 v to v dd + 0.2 v digital output voltage to gnd ? 0.3 v to vdd + 0.2 v operating temperature range ? 40c to + 85c storage temperature range ? 65c to +1 50c 1 barometric pressure 2 bar 1 extended exposu re to temperatures that are lower than ?40c or higher than +105c can adversely affect the accuracy of the factory calibration. stresses above those listed under absolute maximum ratings may cause permanent damage to the device. this is a stress rating o nly; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliabilit y. table 4 . package characteristics package type ja jc device weight 24- lead module ( ml -24 -6) 22.8 c/w 10.1 c/w 48 g esd caution www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 8 of 40 pin configuration and function descripti ons 1 dio3 sclk din dio1 dio2 vdd gnd gnd dnc dnc dnc vddrtc dio4 dout cs rst vdd vdd gnd dnc dnc dnc dnc dnc 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ADIS16480 top view (not to scale) notes 1. this representation displays the top view pinout for the mating socket connector. 2. the actual connector pins are not visible from the top view. 3. mating connector: samtec clm-112-02 or equivalent. 4. dnc = do not connect to these pins. 10278-005 figure 5. mating connector pin assignments pin 1 pin 23 10278-006 figure 6 . axial ori entation ( top side facing up) table 5 . pin function descriptions pin no. mnemonic type description 1 dio3 input/output configurable digital input/output . 2 dio4 input/output configurable digital input/output . 3 sclk i nput spi s erial clock. 4 dout o utput spi data output. clocks output on sclk falling edge. 5 din i nput spi data input. clocks input on sclk rising edge. 6 cs i nput spi chip select. 7 dio1 input/output configurable digital input/output. 8 rst i nput reset. 9 dio2 input/output configurable digital input/output. 10, 11, 12 v dd s upply power supply. 13, 14, 15 gnd s upply power ground. 16 to 22, 24 dnc not applicable do not connect to these pin s. 23 vddrtc s upply real - time clock power supply. www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 9 of 40 typical performance characteristics 1000 1 10 100 0.01 0.1 1 10 100 1000 10000 root allan variance (/hour) integration period (seconds) +1 C1 average 10278-007 figure 7 . gyroscope allan variance, 25c 0.001 0.00001 0.0001 0.01 0.1 1 10 100 1000 10000 root allan variance ( g) integration period (seconds) +1 C1 average 10278-008 figure 8. accelerometer allan variance, 25 c 0.8 ?0.8 ?0.6 ?0.4 ?0.2 0 0.2 0.4 0.6 ?40 ?30 ?20 ?10 0 10 20 30 40 50 60 70 80 gyro scale error (% fs) temperature (c) initial error = 0.5% tempco = 35ppm/c 10278-009 figure 9. gyroscope scale (sensitivity) error and hysteresis vs. temperature 0.6 ?0.6 ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0 0.1 0.2 0.3 0.4 0.5 ?40 ?30 ?20 ?10 0 10 20 30 40 50 60 70 80 gyro bias error (/sec) temperature (c) initial error = 0.2/sec tempco = 0.0025/sec/c 10278-010 figure 10 . gyroscope bias error and hysteresis vs. temperature www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 10 of 40 basic operation the ADIS16480 is an autonomous sensor syst em that starts up on its own when it has a valid power supply. after running through its initialization process, it begins sampling, processing , and loading calibrated sensor data into the output registers , wh ich are accessible using the spi port . the spi port typically connects to a compatible port on an embedded processor, using the connection diagram in figure 11 . the four spi signals facilitate synchronous, serial data communication. con nect rst (s ee table 5 ) to vdd or leave it open for normal operation. the factory default configuration provides users with a data - ready signal on the dio 2 pin , which pulses high when new data is available in the output data registers. system processor spi master sclk cs din dout sclk ss mosi miso +3.3v irq dio2 vdd i/o lines are compatible with 3.3v logic levels 10 6 3 5 4 9 11 12 23 13 14 15 ADIS16480 10278-0 11 figure 11 . electrical connection diagram table 6 . generic master processor pin names and function s mnemonic function ss slave select irq interrupt request mosi master output, slave input miso master input, slave output sclk serial clock embedded processors typically use control registers to configure their serial ports for commu nicating with spi slave devices such as the ADIS16480 . table 7 provides a list of settings, which describe the spi protocol of the ADIS16480 . the initialization routine of the master processor typically establishes these settings using firmware commands to write them into its serial control registers. table 7 . generic master processor spi settings proces sor setting description master the ADIS16480 operate s as a s lave sclk 15 mhz maximum serial clock rate spi mode 3 cpol = 1 (polarity), and cph a = 1 (phase) msb -f irst mode bit sequence 16- bit mode shift register/data length register structure the register structure and spi port provide a bridge between the sensor processing system and an external, master processor. it contains both output data and control registers. the output data registers include the latest sensor data, a real - time clock, error flags, alarm flags, and identification data. the control registers include sample rate, filtering, input/output, alarms, calibration , ekf tuning, and diagnostic c onfiguration options. all communication between the ADIS16480 and an external processor involves either reading or writing to one of the user registers. dsp output registers control registers triaxis gyro triaxis magn baro temp sensor controller triaxis accel spi 10278-012 figure 12 . basic operation the register structure uses a paged addressing scheme that is composed of 1 3 pages, with each one containing 64 register locations. each register is 16 bits wide, with each byte having its own unique address wi thin that pages memory map. the spi port has access to one page at a time , using the bit sequence in figure 17 . select the page to activate for spi access by writing its code to the page_id register. read the page_id register t o determine which page is currently active. table 8 displays the page_id contents for each page, along with their basic function s. the page_id register is located at a ddress 0x00 o n every page. table 8 . use r register page assignments page page_id function 0 0x00 output data, clock, identification 1 0x01 reserved 2 0x02 calibration 3 0x03 control: sample rate, filtering, i/o , alarms 4 0x04 serial number 5 0x05 fi r filter bank a coefficient 0 to coeffici ent 59 6 0x06 fir filter bank a, c oefficient 6 0 to coefficient 1 19 7 0x07 fir filter bank b, coefficient 0 to coefficient 59 8 0x08 fir filter bank b, coefficient 60 to coefficient 119 9 0x09 fir filter bank c, coefficient 0 to coefficient 59 10 0x0a fir filter bank c, coefficient 60 to coefficient 119 11 0x0b fir filter bank d, coefficient 0 to coefficient 59 12 0x0c fir filter bank d, coefficient 60 to coefficient 119 www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 11 of 40 s pi communication the spi port supports full duplex communication, as shown in figure 17 , which enables external processors to write to din while reading dout , if the previous command was a read request . figure 17 provides a guideline for the bit coding on both din and dout. de vice configuration the spi provides write access to the control registers, one byte at a time, using the bit assignments shown in figure 17 . each register has 16 bits, whe re bits[7:0] represent the lower address (listed in table 9 ) and bits[15:8] represent the upper address. write to the lower byte of a register first, followed by a write to its upper byte. the only register that changes with a single write to its lower byte is the page_id register. for a write command, the first bit in the din sequence is set to 1. address b its[a6:a0] represent the target address , and data command bits [dc7:dc0] represent the data being written to the location. figure 13 provid es an example of writing 0x0 3 to address 0x 00 ( page _i d [7:0]), using din = 0x 8 003. this write command activates the c ontrol page for spi access. sclk cs din din = 1000 0000 0000 0011 = 0x8003, writes 0x03 to address 0x00 10278-013 figure 13 . spi sequence for activating the control p age (din = 0x 80 03 ) dual memory s tructure writing configuration data to a control register updates its sram contents, which are volatile. after optimizing each relevant control register setting in a system, use the manual flash update command, which is located in glob_cmd[3] on p age 3 of the register map. activate the manual flash update command by turning to p age 3 (din = 0x8003) and setting glob_cmd[3] = 1 (din = 0x820 8 , then din = 0x8300 ). m ake sure that the power supply is within specification for the entire 1100 ms processing time for a flash memory update. table 9 provides a memory map for all of the user registers, which includes a column of flash backup information. a yes in this column indicates that a register has a mirror location in flash and, wh en backed up properly, automatically restores itself during startup or after a reset. figure 14 provides a diagram of the dual memory structure used to manage operation and store critical user settings. nonvolatile flash memory (no spi access) manual flash backup s tart-up reset volatile sram spi access 10278-014 figure 14 . sram and flash memory diagram r eading s ensor d ata the ADIS16480 automatically starts up and activates p age 0 for data register access. write 0x00 to the page _ id register (din = 0x8000) to activate p age 0 for data access after accessing any other page. a single register read r equires two 16 - bit spi cycles. the first cycle requests the contents of a register using the bit assignments in figure 17 , and then the register contents follow dout during the second sequence. the first bit in a din command is zero, followed by either the upper or lower address for the register. the last eight bits are dont care, but the spi requ ires the full set of 16 sclks to receive the request. figure 15 includes two register reads in succession , which starts with din = 0x 1a 00 to request the contents of the z_ gyro_out register and follows with 0x18 00 to request t he contents of the z_ gyro_low register. din dout 0x1a00 0x1800 next address z_gyro_out z_gyro_low 10278-015 figure 15 . sp i r ead e xample figure 16 provides an example of the four spi signals when reading prod_id in a repeating pattern. this is a good pattern to use for troubleshooting the spi interface setup and communications because the contents of prod_id are predefined and stable. sclk cs din dout dout = 0100 0000 0110 0000 = 0x4060 = 16,480 (prod_id) din = 0111 1110 0000 0000 = 0x7e00 10278-016 figure 16 . spi read example, second 16 - bit sequence r/w r/w a6 a5 a4 a3 a2 a1 a0 dc7 dc6 dc5 dc4 dc3 dc2 dc1 dc0 d0d1d2d3d4d5d6d7d8d9d10d11d12d13d14 d15 cs sclk din dout a6 a5 d13d14 d15 notes 1. dout bits are produced only when the previous 16-bit din sequence starts with r/w = 0. 2. when cs is high, dout is in a three-state, high impedance mode, which allows multifunctional use of the line for other devices. 10278-017 figure 17 . spi communicat ion bit sequence www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 12 of 40 user registers table 9 . user register memory map (n/a = not applicable) name r/w flash page_id address default register description format page_id r/w no 0x00 0x00 0x00 page i dentifier n/a reserved n/a n/a 0x00 0x02 to 0x0 4 n/a reserved n/a seq_cnt r no 0x00 0x06 n/a sequence counter table 68 sys_e_flag r no 0x00 0x08 0x0000 output, system error flags table 59 diag_sts r no 0x00 0x0a 0x0000 output, self - test error flags table 60 alm_sts r no 0x00 0x0c 0x0000 output, alarm error flags table 61 temp_out r no 0x00 0x0e n/a output, temperature table 57 x_gyro_low r no 0x00 0x10 n/a ou tput, x - axis gyroscope, low word table 14 x_gyro_out r no 0x00 0x12 n/a output, x - axis gyroscope, high word table 10 y_gyro_low r no 0x00 0x14 n/a output, y - axis gyroscope, low word table 15 y_gyro_out r no 0x00 0x16 n/a output, y - axis gyroscope, high word table 11 z_gyro_low r no 0x00 0x18 n/a output, z - axis gyroscope, low word table 16 z_gyro_out r no 0x00 0x1a n/a output, z- axis gyroscope, high word table 12 x_accl_low r no 0x00 0x1c n/a output, x - axis accelerometer, low word table 21 x_accl_out r no 0x00 0x1e n/a output, x - axis accelerometer, high word table 17 y_accl_low r no 0x00 0x20 n/a output, y - axis accelerometer, low word table 22 y_accl_out r no 0x00 0x22 n/a output, y - axis accelerometer, high word table 18 z_accl_low r no 0x00 0x24 n/a output, z - axis accelerometer, low word table 23 z_accl_out r no 0x00 0x26 n/a output, z - axis accelerometer, high word table 19 x_magn_ out r no 0x00 0x28 n/a output, x - axis magnetometer , high word table 38 y_magn_ out r no 0x00 0x2a n/a output, y - axis magnetometer , high word table 39 z_magn_ out r no 0x00 0x2c n/a output, z - axis magnetometer , high word table 40 barom_low r no 0x00 0x2e n/a output, barometer, low word table 56 barom_out r no 0x00 0x30 n/a output, barometer, high word table 54 reserved n/a n/a 0x00 0x3 2 to 0x3 e n/a reserved n/a x_deltang_low r no 0x00 0x4 0 n/a output, x - axis delta angle, low word table 28 x_deltang_out r no 0x00 0x42 n/a output, x - axis delta angle, high word table 24 y_deltang_low r no 0x00 0x44 n/a output, y - axis delta angle, low word table 29 y_deltang_out r no 0x00 0x46 n/a output, y - axis delta angle, high word table 25 z_deltang_low r no 0x00 0x48 n/a output, z - axis delta angle, low word table 30 z_delta ng_out r no 0x00 0x4a n/a output, z - axis delta angle, high word table 26 x_deltvel_low r no 0x00 0x4c n/a output, x - axis delta velocity, low word table 35 x_deltvel_out r no 0x00 0x4e n/a output, x - axis delta velocity, high word table 31 y_deltvel_low r no 0x00 0x50 n/a output, y - axis delta velocity, low word table 36 y_deltvel_out r no 0x00 0x52 n/a output, y - axis delta velocity, high word table 32 z_deltvel_low r no 0x00 0x54 n/a output, z - axis delta velocity, low word table 37 z_deltvel_out r no 0x00 0x56 n/a output, z - axis delta velocity, high word table 33 reserved n/ a n/a 0x00 0x58 n/a reserved n/a q0_c11_out r/w yes 0x00 0x60 n/a quaternion, q0 or rotation matrix , c11 table 42 q1_c12_out r/w yes 0x00 0x62 n/a quaternion, q1 or rotation matrix , c1 2 table 43 q2_c13 _out r/w yes 0x00 0x64 n/a quaternion, q2 or rotation matrix , c1 3 table 44 q3_c21_out r/w yes 0x00 0x66 n/a quaternion, q3 or rotation matrix , c 21 table 45 c22_out r/w yes 0x00 0x68 n/a rotation matrix, c22 table 46 roll_c23_out r/w yes 0x00 0x6a n/a euler angle, pitch axis , or rotation matrix , c23 table 47 pitch_c31_out r/w yes 0x00 0x6c n/a euler angle, roll axis , or rotation matrix , c31 table 48 yaw_c32_out r/w yes 0x00 0x6e n/a euler angle, yaw axis , or rotation matrix , c32 table 49 c33_out r/w yes 0x00 0x7 0 n/a rotation m atrix, c33 table 50 reserved n/a n/a 0x00 0x7 2 to 0x7 6 n/a reserved n/a www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 13 of 40 name r/w flash page_id address default register description format time_ms_out r yes 0x00 0x78 n/a factory configuration time: minutes/seconds table 156 time_dh_out r yes 0x00 0x7a n/a factory configuration date/time: day/hour table 157 time_ym_out r yes 0x00 0x7c n/a factory configuration date: year/month table 158 prod_id r yes 0x00 0x7e 0x4060 output, product identification (16,48 0) table 65 reserved n/a n/a 0x01 0x00 to 0x7e n/a reserved n/a page_id r/w no 0x02 0x00 0x00 page identifier n/a reserved n/a n/a 0x02 0x02 n/a reserved n/a x_gyro_scale r/w yes 0x02 0x04 0x0000 calibration, scale, x - axis gyroscope table 103 y_gyro_scale r/w yes 0x02 0x06 0x0000 calibration, scale, y - axis gyroscope table 104 z_gyro_scale r/w yes 0x02 0x08 0x0000 calibration, scale, z - axis gyroscope table 105 x_accl_sca le r/w yes 0x02 0x0a 0x0000 calibration, scale, x - axis accelerometer table 113 y_accl_scale r/w yes 0x02 0x0c 0x0000 calibration, scale, y - axis accelerometer table 114 z_accl_scale r/w yes 0x02 0x0e 0x0000 calibration, scale, z - axis accelerometer table 115 xg_bias_low r/w yes 0x02 0x10 0x0000 calibration, offset, gyroscope, x - axis, low word table 100 xg_bias_high r/w yes 0x02 0x12 0x0000 calibration, offset, gyroscope, x - axis, high word table 97 yg_bias_low r/w yes 0x02 0x14 0x0000 calibration, offset, gyroscope, y - axis, low word table 101 yg_bias_high r/w yes 0x02 0x16 0x0000 calibration, offset, gyroscope, y - axis, high word table 98 zg_bias_low r/w yes 0x02 0x18 0x0000 calibration, offset, gyroscope, z - axis, low word table 102 zg_bias_high r/w yes 0x02 0x1a 0x0000 calibration, offset, gyroscope , z - axis, high word table 99 xa_bias_low r/w yes 0x02 0x1c 0x0000 calibration, offset, accelerometer, x- axis , low word table 110 xa_bias_high r/w yes 0x02 0x1e 0x0000 calibration, offset, accelerometer, x- axis , high word table 107 ya_bias_low r/w yes 0x02 0x20 0x0000 calibration, offset, accelerometer, y- axis , low word table 111 ya_bias_high r/w yes 0x02 0x22 0x0000 calibration, offset, accelerometer, y- axis , high word table 108 za_bias_low r/w yes 0x02 0x24 0x0000 calibration, offset, accelerometer, z- axis , low word table 112 za_bias_high r/w yes 0x02 0x26 0x0000 calibration, offset, accelerometer, z- axis , high word table 109 hard_iron_x r/w yes 0x02 0x28 0x0000 calibration, hard iron, magnetometer, x- axis table 116 hard_iron_y r/w yes 0x02 0x2a 0x0000 calibration, hard iron, magnetometer, y - axis table 117 hard_iron_z r/w yes 0x02 0x2c 0x0000 calibration, hard iron, magnetometer, z- axis table 118 soft_iron_s11 r/w yes 0x02 0x2e 0x0000 calibration, soft iron, magnetometer, s11 table 120 soft_iron_s12 r/w yes 0x02 0x30 0x0000 calibration, soft iron, magnetometer, s12 table 121 soft_iron_s13 r/w yes 0x02 0x32 0x0000 calibration, soft iron, magnetometer, s13 table 122 s oft_iron_s21 r/w yes 0x02 0x34 0x0000 calibration, soft iron, magnetometer, s21 table 123 soft_iron_s22 r/w yes 0x02 0x36 0x0000 calibration, soft iron, magnetometer, s22 table 124 soft_iron_s23 r/w yes 0x02 0x38 0x0000 calibration, soft iron, magnetometer, s23 table 125 soft_iron_s31 r/w yes 0x02 0x3a 0x0000 calibration, soft iron, magnetometer, s31 table 126 soft_iron_s32 r/w yes 0x02 0x3c 0x0000 ca libration, soft iron, magnetometer, s32 table 127 soft_iron_s33 r/w yes 0x02 0x3e 0x0000 calibration, soft iron, magnetometer, s33 table 128 br_bias_low r/w yes 0x02 0x40 0x0000 calibration, offset, bar ometer, low word table 131 br_bias_high r/w yes 0x02 0x42 0x0000 calibration, offset, barometer, high word table 130 reserved n/a n/a 0x02 0x44 to 0x60 n/a reserved n/a refmtx_r11 r/w yes 0x02 0x62 0x 7 fff reference transformation matrix , r11 table 84 refmtx_r12 r/w yes 0x02 0x64 0x0000 reference transformation matrix , r12 table 85 refmtx_r13 r/w yes 0x02 0x66 0x0000 re ference transformation matrix , r13 table 86 refmtx_r21 r/w yes 0x02 0x68 0x0000 reference transformation matrix , r21 table 87 refmtx_r22 r/w yes 0x02 0x6a 0x7fff reference transformation matrix , r22 table 88 refmtx_r23 r/w yes 0x02 0x6c 0x0000 reference transformation matrix , r23 table 89 refmtx_r31 r/w yes 0x02 0x6e 0x0000 reference tran sformation matrix , r31 table 90 refmtx_r32 r/w yes 0x02 0x70 0x0000 reference transformation matrix , r32 table 91 refmtx_r33 r/w yes 0x02 0x72 0x7fff reference transforma tion matrix , r33 table 92 user_scr_1 r/w yes 0x02 0x74 0x0000 user scratch register 1 table 152 user_scr_2 r/w yes 0x02 0x76 0x0000 user scratch register 2 table 153 user_scr_3 r/w yes 0x02 0x78 0x0000 user scratch register 3 table 154 user_scr_4 r/w yes 0x02 0x7a 0x0000 user scratch register 4 table 155 www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 14 of 40 name r/w flash page_id address default register description format flshcnt_low r yes 0x02 0x7c n/a diagnos tic, flash memory count, low word table 147 flshcnt_high r yes 0x02 0x7e n/a diagnostic, flash memory count, high word table 148 page_id r/w no 0x03 0x00 0x0000 page identifier n/a glob_cmd w no 0x03 0 x02 n/a control, global commands table 146 reserved n/a n/a 0x03 0x04 n/a reserved n/a fnctio_ctrl r/w yes 0x03 0x06 0x000d control, i/o pins, functional definitions table 149 gpio_ctrl r/w yes 0x03 0x08 0x00x0 1 control, i/o pins, general purpose table 150 config r/w yes 0x03 0x0a 0x00c0 control, clock, and miscellaneous correction table 106 dec_rate r/w yes 0x03 0x0c 0x0000 control, output sample ra te decimation table 67 reserved n/a n/a 0x03 0x0e n/a reserved n/a slp_cnt r/w no 0x03 0x10 n/a control, power - down/sleep mode table 151 reserved n/a n/a 0x03 0x12 to 0x14 n/a reserved n/a filtr_bnk_ 0 r/w yes 0x03 0x16 0x0000 filter selection table 69 filtr_bnk_1 r/w yes 0x03 0x18 0x0000 filter selection table 70 reserved n/a n/a 0x03 0x1a to 0x1e n/a reserved n/a alm_cnfg_0 r/w yes 0x03 0x20 0x0000 alarm configuration table 142 alm_cnfg_1 r/w yes 0x03 0x22 0x0000 alarm configuration table 143 alm_cnfg_2 r/w yes 0x03 0x24 0x0000 alarm configuration table 144 reserved n /a n/a 0x03 0x26 n/a reserved n/a xg_alm_magn r/w yes 0x03 0x28 0x0000 alarm, x - axis gyroscope threshold setting table 132 yg_alm_magn r/w yes 0x03 0x2a 0x0000 alarm, y - axis gyroscope threshold setting t able 133 zg_alm_magn r/w yes 0x03 0x2c 0x0000 alarm, z - axis gyroscope threshold setting table 134 xa_alm_magn r/w yes 0x03 0x2e 0x0000 alarm, x - axis accelerometer threshold table 135 ya_alm_magn r/w yes 0x03 0x30 0x0000 alarm, y - axis accelerometer threshold table 136 za_alm_magn r/w yes 0x03 0x32 0x0000 alarm, z - axis accelerometer threshold table 137 xm_alm_magn r/w yes 0x03 0x34 0x0000 alarm, x - axis magnetometer threshold table 138 ym_alm_magn r/w yes 0x03 0x36 0x0000 alarm, y - axis magnetometer threshold table 139 zm_alm_magn r/w yes 0x03 0x38 0x0000 alarm, z - axis magnetometer threshold table 140 br_alm_magn r/w yes 0x03 0x3a 0x0000 alarm, barometer threshold setting table 141 reserved n/a n/a 0x03 0x3c to 0x4e n/a reserved n/a ekf_cnfg r/w yes 0x03 0x50 0x0 2 00 extended kalman filter c onfiguration table 94 reserved n/a n/a 0x03 0x52 n/a reserved n/a decln_angl r/w yes 0x03 0x54 0x0000 declination a ngle table 93 acc_distb_thr r/w yes 0x03 0x56 0x0020 accelerometer d isturbance t hreshol d table 95 mag_distb_thr r/w yes 0x03 0x58 0x0030 magnetometer d isturbance t hreshold table 96 reserved n/a n/a 0x03 0x5a to 0x5e n/a reserved n/a qcvr_nois _lwr r/w yes 0x03 0x60 0xc5ac process covarian ce, gyroscope noise , lower word table 77 qcvr_nois _upr r/w yes 0x03 0x62 0x3727 process covariance, gyroscope noise , upper word table 76 qcvr_rrw_lwr r/w yes 0x03 0x64 0xe6ff pr ocess covariance, gyroscope rrw , lower word table 79 qcvr_rrw_upr r/w yes 0x03 0x66 0x2e5b process covariance, gyroscope rrw , upper word table 78 reserved n/a n/a 0x03 0x68 to 0x6a n/a reserved n /a rcvr_acc_lwr r/w yes 0x03 0x6c 0x705f measurement covariance, accelerometer, upper table 81 rcvr_acc_upr r/w yes 0x03 0x6 e 0x3189 measurement covariance, accelerometer, lower table 80 rcvr_mag_lwr r/w yes 0x03 0x70 0xcc77 measurement covariance, magnetometer, upper table 83 rcvr_mag_upr r/w yes 0x03 0x72 0x32ab measurement covariance, magnetometer, lower table 82 reserved n/a n/a 0x03 0x74 to 0x76 n/a reserved n/a firm_rev r yes 0x03 0x78 n/a firmware revision table 62 firm_dm r yes 0x03 0x7a n/a firmware programming date: day/month table 63 firm_ y r yes 0x03 0x7c n/a firmware programming date: year table 64 reserved n/a n/a 0x03 0x7e n/a reserved n/a reserved n/a n/a 0x04 0x00 to 0x18 n/a reserved n/a serial_num r yes 0x04 0x20 n/a serial number table 66 reserved n/a n/a 0x04 0x22 to 0x7f n/a reserved n/a www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 15 of 40 name r/w flash page_id address default register description format fir_coef_axxx r/w yes 0x05 0x00 to 0x7e n/a fir filter bank a, coefficients 0 through 59 table 71 fir_coef_axxx r/w yes 0x06 0x00 to 0x7e n/a fir f ilter bank a, coefficients 60 through 119 table 71 fir_coef_bxxx r/w yes 0x07 0x00 to 0x7e n/a fir filter bank b, coefficients 0 through 59 table 72 fir_coef_bxxx r/w yes 0x08 0x00 to 0x7e n/a fir filter bank b, coefficients 60 through 119 table 72 fir_coef_cxxx r/w yes 0x09 0x00 to 0x7e n/a fir filter bank c, coefficients 0 through 59 table 73 fir_coef_cxxx r/w yes 0x0 a 0x00 to 0x7e n/a fir filter bank c, coefficients 60 through 119 table 73 fir_coef_dxxx r/w yes 0x0b 0x00 to 0x7e n/a fir filter bank d, coefficients 0 through 59 table 74 fir_coef_dxxx r/w yes 0x0c 0x 00 to 0x7e n/a fir filter bank d, coefficients 60 through 119 table 74 1 the gpio_ctrl[7:4] bits reflect the logic levels on the diox lines and do not have a default setting. www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 16 of 40 output data registers after the ADIS16480 completes its start-up process, the page_id register contains 0x0000, which sets page 0 as the active page for spi access. page 0 contains the output data, real-time clock, status, and product identification registers. inertial sensor data format the gyroscope, accelerometer, delta angle, delta velocity, and barometer output data registers use a 32-bit, twos complement format. each output uses two registers to support this resolution. figure 18 provides an example of how each register contributes to each inertial measurement. in this case, x_gyro_out is the most significant word (upper 16 bits), and x_gyro_low is the least significant word (lower 16 bits), which captures the bit growth associated with the final averaging/decimation register. when using the maximum sample rate (dec_rate = 0x0000, the x_xxxx_low registers are not active. x-axis gyroscope data 015 15 0 x_gyro_out x_gyro_low 10278-018 figure 18. gyroscope output fo rmat example, dec_rate > 0 the arrows in figure 19 describe the direction of the motion, which produces a positive output response in each sensors output register. the accelerometers respond to both dynamic and static forces associated with acceleration, including gravity. when lying perfectly flat, as shown in figure 19, the z-axis accelerometer output is 1 g , and the x and y accelerometers are 0 g . ekf_cnfg[3] (see table 94) provides a selection for gyroscope, accelerometer, and magnetometer data orientation, between the body frame and the local navigation frame. when ekf_cnfg[3] = 0 (default), the accelerometer and magnetometer data displays in the local navigation frame. rotation rate (gyroscope) the registers that use the x_gyro_out format are the primary registers for the gyroscope measurements (see table 10, table 11, and table 12). when processing data from these registers, use a 16-bit, twos complement data format. table 13 provides x_gyro_out digital coding examples. table 10. x_gyro_out (page 0, base address = 0x12) bits description [15:0] x-axis gyroscope data; twos complement, 450/sec range, 0/sec = 0x0000, 1 lsb = 0.02/sec table 11. y_gyro_out (page 0, base address = 0x16) bits description [15:0] y-axis gyroscope data; twos complement, 450/sec range, 0/sec = 0x0000, 1 lsb = 0.02/sec table 12. z_gyro_out (page 0, base address = 0x1a) bits description [15:0] z-axis gyroscope data; twos complement, 450/sec range, 0/sec = 0x0000, 1 lsb = 0.02/sec table 13. x_gyro_out data format examples rotation rate decimal hex binary +450/sec +22,500 0x57e4 0101 0111 1110 0100 +0.04/sec +2 0x0002 0000 0000 0000 0010 +0.02/sec +1 0x0001 0000 0000 0000 0001 0/sec 0 0x0000 0000 0000 0000 0000 ?0.02/sec ?1 0xffff 1111 1111 1111 1111 ?0.04/sec ?2 0xfffe 1111 1111 1111 1110 ?450/sec ?22,500 0xa81c 1010 1000 0001 1100 the msb in x_gyro_low has a weight of 0.01/sec, and each subsequent bit has ? the weight of the previous one. table 14. x_gyro_low (page 0, base address = 0x10) bits description [15:0] x-axis gyroscope data; additional resolution bits table 15. y_gyro_low (page 0, base address = 0x14) bits description [15:0] y-axis gyroscope data; additional resolution bits table 16. z_gyro_low (page 0, base address = 0x18) bits description [15:0] z-axis gyroscope data; additional resolution bits pin 1 pin 23 a y m y g y y-axis g x x-axis a x m x z-axis a z m z g z 10278-019 figure 19. inertial sensor direction reference diagram www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 17 of 40 acceleration the registers that use the x_accl_out format are the primary registers for the accelerometer measure ments (see table 17, table 18 , and table 19) . when processing data from these registers, use a 16 - bit, twos complement data format. table 20 provide s x_ accl _out digital coding examples. table 17. x_ accl _out ( page 0, base a ddress = 0x1e ) bits description [15:0] x- axis a ccelerometer data; twos complement , 1 0 g range, 0 g = 0x0000, 1 lsb = 0.8 m g table 18 . y_accl _out ( page 0, base a ddress = 0x22 ) bits description [15:0] y - axis accelerometer data; twos complement, 1 0 g range, 0 g = 0x0000, 1 lsb = 0.8 m g table 19 . z_accl _out ( page 0, base address = 0x26 ) bits description [15:0 ] z- axis accelerometer data; twos complement, 1 0 g range, 0 g = 0x0000, 1 lsb = 0.8 m g table 20 . x_ accl _out data format examples acceleration decimal hex binary +1 0 g +1 2,500 0x30d4 0 011 0000 1101 0 100 +1.6 m g +2 0x0002 0000 0000 0000 0010 +0.8 m g +1 0x0001 0000 0000 0000 0001 0 m g 0 0x0000 0000 0000 0000 0000 ? 0.8 m g ?1 0xffff 1111 1111 1111 1111 ? 1.6 m g ?2 0xfffe 1111 1111 1111 1110 ?10 g ?1 2,500 0xcf2 c 1 10 0 1 111 0010 1100 the msb in x_accl_low has a weight of 0.4 m g , and each subsequent bit has ? the weight of the previous one. table 21. x_ accl _low ( page 0, base address = 0x1c ) bits description [15:0] x- axis a ccelerometer data; additional resolution bits table 22 . y_accl_low ( page 0, base address = 0x20 ) bits description [15:0] y- axis accelerometer data; additional resolution bits table 23 . z_accl _low ( page 0, base address = 0x24 ) bits description [15:0] z- axis accelerometer data; additional resolution bits delta angles the delta angle outputs represent an integration of the gyro - scope measurements and use the following formula for all three axes (x - axis displayed): ( ) s s nx nx s x f rate dec t t 1_ ; 2 , 1, + =?+ ? =? + ? where: x is the gyroscope, x - axis. t s is the time between samples. when using the internal sample clock, f s is equal to 2.46 khz. when using the external clock option, the time between samples is the time between active edges on the input clock signal, as measured by the internal clock (252 mhz). see table 67 for more information on the dec_rate register. the regis ters that use the x _deltang_out format are the primary registers for the delta angle calculations. when processing data from these registers, use a 16 - bit, twos complement data format (see table 24, table 25 , and table 26 ). table 27 provides x_deltang_out digital coding examples. table 24. x_deltang_out ( page 0, base address = 0x42 ) bits description [15:0] x- axis d elta ang le data; twos complement, 720 range , 0 = 0x0000, 1 lsb = 720/2 15 = ~ 0.02 2 table 25. y_deltang_out ( page 0, base address = 0x46 ) bits description [15:0] y- axis delta angle data; twos complement, 72 0 range, 0 = 0x0000, 1 l sb = 720/2 15 = ~ 0.02 2 table 26. z_deltang_out ( page 0, base address = 0x4a ) bits description [15:0] z- axis delta angle data; twos complement, 72 0 range, 0 = 0x0000, 1 lsb = 720/2 15 = ~ 0.02 2 table 27. x _deltang_out data format examples angle () decimal hex binary + 720 (2 15 ? 1)/ 2 15 + 32,767 0x 7fff 01 1 1 1 11 1 1 11 1 1 111 + 1440/2 15 +2 0x0002 0000 0000 0000 0010 + 720/2 15 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 ? 720/2 15 ?1 0xffff 1111 1111 1111 1111 ? 1440/2 15 ? 2 0xfffe 1111 1111 1111 1110 ? 720 ? 32,768 0x 8 000 1 000 0000 0000 0000 www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 18 of 40 the msb in x_deltang_low has a weight of ~ 0.01 1 (720/ 2 16 ), and each subsequent bit carries a weight of ? of the previous one. table 28. x_deltang_low ( page 0, base address = 0x40 ) bits description [15: 0] x- axis d elta angle data ; additional resolution bits table 29. y_deltang_low ( page 0, base address = 0x44 ) bits description [15:0] y- axis delta angle data; additional resolution bits table 30. z_deltang_ low ( page 0, base address = 0x48 ) bits description [15:0] z- axis delta angle data; additional resolution bits delta velocity the delta velocity outputs represent an integration of the accelerometer measurements and use the following formula for all thre e axes (x - axis displayed): ( ) s s nx nx s x f rate dec taa t 1_ ; 2 , 1, + =?+ ? =? + where: a x is the accelerometer , x - axis. t s is the time between samples. when using the internal sample clock, f s is equal to 2.46 khz. when using the external clock option, the time between samples is the time between active edges on the input clock signal, as measured by the internal clock ( 252 mhz). see table 67 for more information on the dec_rate register. the registers that use the x _deltvel_out format are the primary registers for the delta velocity calculations. when processing data from these registers, use a 16 - bit, twos complement data format (see table 31, table 32 , and table 33). table 34 p rovides x_deltvel_out digital coding examples. table 31. x_deltvel_out ( page 0, base address = 0x4e ) bits description [15:0] x- axis d elta velocity data ; twos complement, 20 0 m/sec range , 0 m/sec = 0x0000 1 lsb = 20 0 m/sec (2 15 C 1) = ~ 6.104 mm/sec table 32. y_d eltvel_out ( page 0, base address = 0x52 ) bits description [15:0] y- axis delta velocity data; twos complement, 20 0 m/sec range, 0 m/sec = 0x0000 1 lsb = 20 0 m/sec (2 15 ? 1) = ~6.104 mm/sec table 33. z_deltvel_out ( page 0, base address = 0x56 ) bits description [15:0] z- axis delta velocity data; twos complement, 20 0 m/sec range, 0 m/sec = 0x0000 1 lsb = 20 0 m/sec (2 15 ? 1) = ~6.104 mm/sec ta ble 34. x _deltvel_out , data format examples velocity (m/sec) decimal hex binary + 160 (2 15 ? 1)/ 2 15 +32,767 0x7fff 0111 1111 111 1 1111 + 400/2 15 +2 0x0002 0000 0000 0000 0010 + 200 /2 15 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 000 0 0000 0000 0000 ? 200 /2 15 ?1 0xffff 1111 1111 1111 1111 ? 400 /2 15 ?2 0xfffe 1111 1111 1111 1110 ? 160 ? 32,76 8 0x8000 1000 0000 0000 0000 the msb in x_deltvel_low has a weight of ~ 3.05 2 mm/sec ( 200 m/sec 2 16 ), and each subsequent bit carries a weight of ? of the previous one. table 35. x_deltvel_low ( page 0, base address = 0x4c ) bits description [15:0] x- axis d elta velocity data ; additional resolution bits table 36. y_deltvel_low ( page 0, base address = 0 x50 ) bits description [15:0] y- axis delta velocity data; additional resolution bits table 37. z_deltvel_low ( page 0, base address = 0x54 ) bits description [15:0] z- axis delta velocity data; additional resolution bits www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 19 of 40 magnetomete rs the registers that use the x_magn_out format are the primary registers for the magnetometer measurements. when processing data from these registers, use a 16 - bit, twos complement data format. table 38, table 39, and table 40 provide each registers numerical format, and table 41 provides x _ magn_ out digital coding examples. table 38. x _ magn_ out (page 0, base address = 0x 28 ) b its description [15:0] x- axis magnetometer data; twos complement, 3.2767 g auss range, 0 g auss = 0x0000, 1 lsb = 0.1 mg auss table 39. y _ magn_ out (page 0, base address = 0x 2a ) bits description [15:0] y- axis magnetometer data; tw os complement, 3.2767 g auss range, 0 g auss = 0x0000, 1 lsb = 0.1 mg auss table 40. z _ magn_ out (page 0, base address = 0x 2c ) bits description [15:0] z- axis magnetometer data; twos complement, 3.2767 g auss range, 0 g auss = 0x000 0, 1 lsb = 0.1 mg auss table 41. x _ magn_ out data format examples magnetic field decimal hex binary + 3.2767 gauss +32,767 0x7fff 0111 1111 1111 1111 +0.2 mgauss +2 0x0002 0000 0000 0000 0010 +0.1 mgauss +1 0x0001 0000 0000 0000 0 001 0 gauss 0 0x0000 0000 0000 0000 0000 ? 0.1 mgauss ?1 0xffff 1111 1111 1111 1111 ? 0.2 mgauss ?2 0xfffe 1111 1111 1111 1110 ? 3. 2768 gauss ? 32,768 0x8000 1000 0000 0000 0000 roll, p itch, y aw a ngles the ekf_cnfg ( table 94 ) register contains two bits, which define the o utput format of the angle estimates. the first one is ekf_cnfg[4], which selects the output format. when ekf_cnfg[4] = 0; the output data is in the format of a q uaternion vector (see table 42 through tabl e 45 ) and euler angles (see table 47 through table 49 ). when ekf_cnfg[4] = 1, the output data is in the form of a rotation matrix ( s ee table 42 through table 50). quaternion this four - element hypercomplex number defines the attitude of the body frame, relative to that of the navigation frame. the qx_c xx _out registers (see table 42 through table 45 ) co ntain the value for each element (q0, q1, q2, q4). the element , q0 , is the scalar part of the quaternion and represents the magnitude of the rotation. the vector portion of the quaternion is defined by ( q1, q2, q3) t , which identifies the axis about which t he rotation takes place, in adjusting the body frame to that of the navigation frame. when the orientation is in its reference position, q0 is equal to one and q1, 2 , and q3 are equal to zero. these registers update at the same data rate as the gyroscopes and accelerometers. euler angles the euler angle names are yaw () , p itch () , and r oll () . see figure 19 for the axial association of these angles. these three elements represent the most intuitive way of describing orientation angles . the process of translating body frame data to the nav igation frame can be broken down into three successive translations. these translations follow as the y aw rotation about the z- axis , followed by the pitch rotation about the y- axis , and finally the r oll rotation about the x-axis. reverse this sequence to resolve a reverse rotation. difficulties in this process arise due to the singularities that occur whenever the pitch approaches 90 thus making the r oll indistinguisha ble from the y aw. for applications that may approach these limits, the quaternion or ro tation matrix output may be more appro - priate. when the ADIS16480 is in its reference position, all three euler angles are equal to zero. the update rate for these variables is the same as the gyrosco pes and accelerometers. www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 20 of 40 rotation matrix data the rotation matrix defines the attitude of the body frame relative to that of the navigation frame. th e c xx _out registers (s ee table 42 through table 50 ) define each element in this 3 3 matrix. each element is the product of the unit vectors that describe the axes of the two frames, which in turn, are equal to the cosines of the angles between the axes. when the ADIS16480 i s in its reference position, the r ota tion matrix are equal to a 3 3 identify matrix. table 42 . q0_c11_out (page 0, base address = 0x60) bits description [15:0] quarterion scalar, q0 or r otation m atrix, c11 twos complement q0 scale factor = 0.0055 /lsb ( 180 /2 15 ) c11 scale factor = 0.000030518/lsb (1/2 15 ) table 43 . q1_c12_out (page 0, base address = 0x62) bits description [15:0] qaurterion vector, q1; or rotation matrix , c12 twos complement q1 scale factor = 0.000030518/lsb (1/2 15 ) c12 scale factor = 0.000030518/lsb (1/2 15 ) table 44 . q2_c13_out (page 0, base address = 0x64) bits description [15:0] qaurterion vector, q2 ; or rotation matrix , c13 twos complement q2 scale factor = 0.000030518/lsb (1/2 15 ) c13 scale factor = 0.000030518/lsb (1/2 15 ) table 45 . q3_c21_out (page 0, base address = 0x66) bits description [15:0] qaurterion vector, q3 ; or rotation matrix , c21 twos complement q3 scale factor = 0.000030518/lsb (1/2 15 ) c21 scale factor = 0.000030518/lsb (1/2 15 ) table 46 . c22_out (page 0, base address = 0x68) bits description [15:0] rotation matrix, c22 , twos complement c22 scale factor = 0.000030518/lsb (1/2 15 ) table 47 . roll_c23_out (page 0, base address = 0x6a) bits description [15:0] euler angle, , roll or rotation matrix , c23 twos complement, r ange: 180 ( radians) roll angle scale factor = ( 180/2 15 ) / lsb rotation m atrix variable, c23 two s com plement c23 scale factor = 0.000030518/lsb (1/2 15 ) table 48 . pitch_c31_out (page 0, base address = 0x6 c) bits description [15:0] euler angle, , p itch or rotation matrix , c31 twos complement, r ange: 90 (/2 radians) pitch angl e scale factor = ( 180/2 15 ) / lsb rotation m atrix variable, c31 twos complement, 0.000030518/lsb (1/2 15 ) table 49. yaw_c32_out (page 0, base address = 0x6 e) bits description [15:0] euler angle, , y aw or rotation matrix , c32 twos c omplement, r ange: 180 ( radians) yaw angle scale factor = ( 180/2 15 )/ lsb rotation m atrix variable, c32 twos complement, 0.000030518/lsb (1/2 15 ) table 50 . c33_out (page 0, base address = 0x 70 ) bits description [15:0] rotation matrix, c33 , t wos complement c22 scale factor = 0.000030518/lsb (1/2 15 ) table 51 . rotation matrix/q1/q2/q3 data format examples angle () decimal hex binary (2 15 ? 1)/2 15 +32,767 0x7fff 0111 1111 111 1 1111 2/2 15 +2 0x0002 0000 0000 0000 0010 1/2 15 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 ? 1/2 15 ?1 0xffff 1111 1111 1111 1111 ? 2/2 15 ?2 0xfffe 1111 1111 1111 1110 ?1 ? 32,768 0x8000 1000 0000 0000 0000 table 52. yaw, roll, q0 angle data format examples angle () decimal hex binary +180 (2 15 ? 1)/2 15 +32,767 0x7fff 0111 1111 111 1 1111 +360/2 15 +2 0x0002 0000 0000 0000 0010 +180/2 15 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 ? 180/2 15 ?1 0xffff 1111 1111 1111 1111 ? 360/2 15 ?2 0xfffe 1111 1111 1111 1110 ? 180 ? 32,768 0x8000 1000 0000 0000 0000 table 53 . pitch angle data format examples angle () decimal hex binary +90 (2 15 ? 1)/2 15 + 16,383 0x 3 fff 0 0 11 1111 1110 1111 + 360 /2 15 +2 0x0002 0000 0000 0000 0010 + 180/2 15 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 ? 180/2 15 ?1 0xffff 1111 1111 1111 1111 ? 360/2 15 ?2 0xfffe 1111 1111 1111 1110 ? 90 ? 16,384 0x c 000 11 00 0000 0000 0000 www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 21 of 40 barometer the barom_out register (s ee table 54) and barom_low register (s ee table 56) provide access to the barometric pressure data. these two registers combine to provide a 32 - bit, twos comple ment format. some applications are able to use barom_out by itself. for cases where the finer resolution available from barom_low is valuable, combine them in the same manner as the gyroscopes ( s ee figure 18 ). when processing data from the barom_out register alone, use a 16- bit, twos complement data format. table 54 provide s the numerical format in barom_out , and table 55 provides digital coding examples. table 54 . barom_out (page 0, base address = 0x 30 ) bits description [15:0] barometric pressure; twos complement, 1.3 1 bar range, 0 bar = 0x0000 , 40 bar/lsb table 55 . barom _out data format examples pressure (bar) decimal hex binary + 0.00004 (2 15 ? 1) +32,767 0x7fff 0111 1111 111 1 1111 + 0.00008 +2 0x0002 0000 0000 0000 0010 + 0.00004 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 ? 0.00004 ?1 0xffff 1111 1111 1111 1111 ? 0.00008 ?2 0xfffe 1111 1111 1111 1110 ? 0.00004 2 15 ? 32,768 0x8000 1000 0000 0000 0000 the barom_low register provides additional resolution for the barometric pressure measurement. the msb has a weight of 20 bar, and each subsequent bit carries a weight of ? of the previous one. table 56 . barom_low (page 0, base address = 0x 2e ) bits description [15:0] barometric pressure; additional resolution bits internal temperature the temp_out register provides an internal temperature measurement that can be useful for observing relative temp erature changes inside of the ADIS16480 (see table 57 ). table 58 provides temp_out digital coding examples . note that this temperature reflect s a higher temperature than ambient, due to self heating. table 57 . temp_out (page 0, base address = 0x0e) bits description [15:0] temperature data; twos complement, 0.00565c per lsb, 25c = 0x 0000 table 58 . temp_out data format examples temperature (c) decimal hex binary +85 +10,619 0x297b 0010 1001 0111 1011 +25 + 0.0113 +2 0x0002 0000 0000 0000 0010 +25 + 0.00565 +1 0x0001 0000 0000 0000 0001 +25 0 0x0000 0000 0000 0000 0000 +25 ? 0.00565 ?1 0xffff 1111 1111 1111 1111 +25 ? 0.0113 ? 2 0xfffe 1111 1111 1111 1110 ? 40 ? 11,5 04 0xd310 1101 0011 00 0 1 000 0 www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 22 of 40 status/ alarm indicators the sys_e_flag register in table 59 provides the system error flags and n ew data bits for the magnetometer and barometer outputs . the new data flags are useful for triggering data collec - tion of the magnetometer and barometer (x_ma gn_out and baro m _xxx registers) because they update at a fixed rate that is not dependent on the d ec_rate setting. note that reading sys_e_flag also resets it to 0x0000. table 59 . sys_e_flag ( page 0, base address = 0x08 ) bits description (default = 0x0000) 15 watch dog timer flag (1 = timed out) 14 not used 13 ekf d ivergence (1 = divergence has occurred) 12 gyroscope saturation 1 = saturation conditions exists and the gyroscope weighting factors in the ekf have been automatically reduced 0 = gyroscope measurements within range 11 magnetometer disturbance 1 = magnetom eter measurements exceed mag_dist b _thr levels ( s ee table 96 ) and the magnetometer influence in the ekf ha s been automatically eliminated 0 = magnetometer measure ments are within the specified normal range 10 lin ear a cceleration 1 = accelerometer measurements exceed acc_distr_thr levels ( s ee table 95 ) and the accelerometer weighting factors in the ekf have been automatically reduced 0 = accelerometer measurements are within the specif ied normal r ange 9 new data flag, barometer (1 = new , unread data) 1 8 new data flag, magnetometer (1 = new , unread data) 2 7 processing o verrun (1 = error) 6 flash memory update, result of glob_cmd[ 3] = 1 (1 = failed update, 0 = update successful) 5 in ertial self - test failure (1 = diag_sts 0x0000) 4 sensor overrange (1 = at least one sensor over ranged) 3 spi communication error (1 = error condition, when the number of sclk pulses is not equal to a multiple of 16 ) [2:1] not used 0 alarm status fla g (1 = alm_sts 0x0000) 1 this flag restore s to zero after reading the contents on barom_out . 2 this flag restore s to zero after reading one x_magn_out register. the diag_st s register in table 60 provides the flags for the int ernal sel f- test function, which is from glob_cmd[1] ( s ee table 146). note that the b arometers flag, d ia g_sts[11], only updates afte r start - up and reset operations and that reading diag_sts also resets it to 0x0000. table 60 . diag_sts ( page 0, base address = 0x0a ) bits description (default = 0x0000) [15 :12 ] not used 11 self- test failure, b arometer (1 = failed at start up ) 10 self- test failure, z- axis magnetometer (1 = failure ) 9 self- test failure, y- axi s magnetometer (1 = failure ) 8 self- test failure, x- axis magnetometer (1 = failure ) [7:6] not used 5 self- test failure, z- axis accelerometer (1 = failure) 4 self- test failure, y- axis accelerometer (1 = failure) 3 self- test failure, x- axis accelerometer (1 = failure) 2 self- test failure, z- axis gyroscope (1 = failure) 1 self- test failure, y- axis gyroscope (1 = failure) 0 self - test failure, x - axis gyroscope (1 = failure) the alm_sts register in table 61 provides the alarm bits for the programmable alarm levels of each sensor . note that reading alm_sts also resets it to 0x0000. table 61 . alm_sts ( page 0, base address = 0x0c ) bits description (default = 0x0000) [15 : 12 ] not used 11 barometer alarm fl ag (1 = alarm is active) 10 z- axis magnetometer alarm flag (1 = alarm is active) 9 y- axis magnetometer alarm flag (1 = alarm is active) 8 x- axis magnetometer alarm flag (1 = alarm is active) [7:6] not used 5 z - axis accelerometer alarm flag (1 = alarm is active) 4 y- axis accelerometer alarm flag (1 = alarm is active) 3 x- axis accelerometer alarm flag (1 = alarm is active) 2 z- axis gyroscope alarm flag (1 = alarm is active) 1 y- axis gyroscope alarm flag (1 = alarm is active) 0 x- axis gyroscope alarm flag (1 = alarm is active) www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 23 of 40 firmware revision the firm_rev register (s ee table 62 ) provides the firmware revision for the internal processor. each nibble represents a digit in this revision code. for example, if firm_rev = 0x01 02, the firmware revision is 1.02. table 62 . firm_rev ( page 3 , base address = 0x 78) bits description [15:12] binary, revision, 10s digit [11:8] binary, revision, 1s digit [7:4] binary, revision, tenths digit [3 :0] binary, rev ision, hundredths digit the firm_dm register (s ee table 63) contains the month and day of the factory configuration date . firm_dm [15:12] and firm_dm [11:8] contain digits that represent the month of factory configuration. for ex ample, november is the 11 th month in a year and represented by firm_dm [15:8] = 0x11. firm_ dm [7:4] and firm_dm [3:0] contain digits that represent the day of factory configuration. for example, the 27 th day of the month is represented by firm_dm [7:0] = 0x27 . table 63. firm_dm (page 3 , base address = 0x7 a) bits description [15:12] binary, month 10s digit, r ange: 0 to 1 [11:8] binary, month 1s digit, r ange: 0 to 9 [7:4] binary, day 10s digit, r ange: 0 to 3 [3:0] binary, day 1s d igit, r ange: 0 to 9 the firm_y register (s ee table 64 ) contains the year of the factory configuration date. for example, the year of 2013 is represented by firm_y = 0x2013. table 64. firm_y (page 3 , base address = 0x7 c) bits description [15:12] binary, year 1000s digit, r ange: 0 to 9 [11:8] binary, year 100s digit, r ange: 0 to 9 [7:4] binary, year 10s digit, r ange: 0 to 9 [3:0] binary, year 1s digit, r ange: 0 to 9 product identificati on the prod_ id register (s ee table 65 ) contains the binary equivalent of the part number (1 6,480 = 0x406 0), and the serial_num register (s ee table 66 ) contains a lot specific serial number. table 65 . prod_id ( page 0, base address = 0x7e ) bits description (default = 0x406 0) [15:0] product identification = 0x 406 0 table 66. serial_num ( page 4 , base address = 0x 20 ) bits description [15:0] lot specific serial number www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 24 of 40 digital signal processing gyroscopes/accelerom eters figure 20 provides a block diagram for all of the comp onents and settings that influence the frequency response for the accelerometers and gyroscopes. the sa mple rate for each accelerometer and gyroscope is 9.84 khz. each sensor has its own averaging/ decimation filter stage, which reduces the update rate to 2.46 ksps. when using the external clock option (fnctio_ctrl[7:4], s ee table 149 ), the input clock drives a 4- sample burst at a sample rate of 9.84 ksps, which feeds into the 4 aver aging/decimation filter. this results in a data rate that is equal to the input clock frequency. note that the sensitivity to coning an d sculling depends on the sample rate. at 2.46 khz, the sensitivity is very low, but can become influential at lower sample rates. for best performance when using an external clock, use the maximum input frequency of 2.4 khz. averaging/decimation filter the dec_rate register (see table 67 ) provides user control for the final filter stage (see figure 20 ), which averages and decimates the accelerometers, gyroscopes , delt a angle , and delta velocity data. note that the orientation outputs do not go through an averaging stage, prior to decimation. the output sample rate is equal to 2460/(dec_rate + 1). when using the external clock option (fnctio_ctrl[7:4], s ee table 149 ), replace the 2460 number in this relationship, with the input clock frequency. for example, turn to page 3 (din = 0x8003) , and set dec_rate = 0x18 (din = 0x8c18, then din = 0x8d00) to reduce the output sam ple rate to 98.4 sps (2460 25). table 67 . dec_rate (page 3, base address = 0x0c) bits description (default = 0x0000) [15:11] dont care [10:0] decimation rate, binary format, maximum = 2047 see figure 20 for impact on sample rate magnetometer/baromet er when using the internal sampling clock, the magnetometer output registers (xmagn_out) update at a rate of 102.5 sps and the barometer output registers (baro m _xxx) update at a rate of 51.25 sps. when using the external clock, the magne - tometers update at a rate of 1/24th of the input clock frequency and the barometers update at a rate that is 1/48th of the input clock frequency. the update rates for the magnetometer and barome ters do not change with the dec_rate register settings. sys_e_flag[9:8] ( s ee table 59 ) offer new data bits for these register s and the seq_cnt register provides a counter function to help determine when there is new data in the magnetome ter and baro meter registers. when seq_cnt = 0x0001, there is new data in the magnetometer and barometer output registers. the seq_cnt register can be useful during initialization to help synchronize read loops for new data in both magnetometer and baromete r outputs. when beginning a continuous read loop, read seq_cnt, then subtract this val u e from the maximum value shown (range) in table 68 to calculate the number of internal sample cycles until both magn etometer an d barometer data is new. table 68. seq_cnt (page 0 , base address = 0x 06 ) bits description [15:11] dont care [6 :0] binary count er : range = 1 to 48/(dec_ rate + 1) mems sensor 330hz 4 2.46khz, f s gyroscope 2-pole: 404hz, 757hz accelerometer 1-pole: 330hz 4 average decimation filter 1 4 4 f s internal clock 9.84khz diox optional input clock fnctio_ctrl[7] = 1 f s < 2400hz notes 1. when fnctio_ctrl[7] = 1, each clock pulse on the designated diox line (fnctio_ctrl[5:4]) starts a 4-sample burst, at a sample rate of 9.84khz. these four samples feed into the 4x average/decimation filter, which produces a data rate that is equal to the input clock frequency. 10278-020 orientation d d 1 d d fir ekf filter ban k average/decimation filter d = dec_rate[10:0] + 1 selectable fir filter bank filtr_bnk_0 filtr_bnk_1 figure 20 . sampling and frequency response block diagram www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 25 of 40 fir filter banks the ADIS16480 provides four configurable, 120 - tap fir filte r banks. each coefficient is 16 bits wide and occupies its own register location with each page. when designing a fir filter for these banks, use a sample rate of 2.46 khz and scale the coefficients so that their sum equals 32,768. for filter designs that have less than 120 taps, load the coefficients into the lower p ortion of the filter and start with coefficient 1. make sure that all unused taps are equal to zero, so that they do not add phase delay to the response. the filtr_bnk_x registers provide three bits per sensor, which configure the filter bank (a, b, c, d) and turn filtering on and off. for example, turn to page 3 (din = 0x8003), then write 0x00 2f to filtr_bnk_0 (din = 0x96 2f , din = 0x9700) to set the x - axis gyroscop e to use the fir filter in bank d, to set the y - axis gyroscope to use the fir filter in bank b, and to enable these fir filters in both x - and y - axis gyroscopes. note that the filter settings update after writing to the upper byte ; therefore, always configure the lower byte first. in cases that require configuration to only the lower byte of eith er filtr_bnk _ 0 or filtr_bnk_ 1, complete the process by writing 0x00 to the upper byte. table 69. filtr_bnk_0 (page 3, base address = 0x16) bits description (default = 0x0000) 15 dont care 14 y- axis accelerometer filter enable (1 = enabled) [13:12] y - axis accelerometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 11 x- axis accelerometer filter enable (1 = enabled) [10:9] x- axis accelerometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 8 z- axis gyroscope filter enable (1 = enabled) [7:6] z - axis gyroscope filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 5 y- axis gyroscope filter enable (1 = enabled) [4:3] y- axis gyroscope filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 2 x- axis gyroscope filter enable (1 = enabled) [1:0] x- axis gyroscope filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d table 70. filtr_bnk_1 (page 3, bas e address = 0x18) bits description (default = 0x0000) [15:12] dont care 11 z- axis magnetometer filter enable (1 = enabled) [10:9] z- axis magnetometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 8 y- axis magnetometer filte r enable (1 = enabled) [7:6] y- axis magnetometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 5 x- axis magnetometer filter enable (1 = enabled) [4:3] x- axis magnetometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d 2 z- axis accelerometer filter enable (1 = enabled) [1:0] z- axis accelerometer filter bank selection: 00 = bank a, 01 = bank b, 10 = bank c, 11 = bank d filter memory organization each filter bank uses two pages of the user register s tructure. see table 71, table 72, table 73, and table 74 for the register addresses in each filter bank. table 71 . filter bank a memory map , fir_coef_a xxx page page_id address register 5 0x05 0x00 page_id 5 0x05 0x02 to 0x07 not used 5 0x05 0x08 fir_coef_ a 000 5 0x05 0x0a fir_coef_ a 001 5 0x05 0x0c to 0x7c fir_coef_ a 002 to fir_coef_ a 058 5 0x05 0x7e fir_coef_ a 059 6 0x06 0x00 pa ge_id 6 0x06 0x02 to 0x07 not used 6 0x06 0x08 fir_coef_ a 060 6 0x06 0x0a fir_coef_ a 061 6 0x06 0x0c to 0x7c fir_coef_ a 062 to fir_coef_ a 118 6 0x06 0x7e fir_coef_d119 table 72 . filter bank b memory map , fir_coef_b xxx page page_id address register 7 0x07 0x00 page_id 7 0x07 0x02 to 0x07 not used 7 0x07 0x08 fir_coef_ b 000 7 0x07 0x0a fir_coef_ b 001 7 0x07 0x0c to 0x7c fir_coef_ b 002 to fir_coef_ b 058 7 0x07 0x7e fir_coef_ b 059 8 0x08 0x00 page_id 8 0x08 0x02 to 0x07 not used 8 0x08 0x08 fir_coef_ b 060 8 0x08 0x0a fir_coef_ b 061 8 0x08 0x0c to 0x7c fir_coef_ b 062 to fir_coef_ b 118 8 0x08 0x7e fir_coef_ b 119 table 73 . filter bank c memory map , fir_coef_ cxxx page page_id address register 9 0x09 0x00 page_id 9 0x09 0x02 to 0x07 not used 9 0x09 0x08 fir_coef_ c 000 9 0x09 0x0a fir_coef_ c 001 9 0x09 0x0c to 0x7c fir_coef_ c 002 to fir_coef_ c 058 9 0x09 0x7e fir_coef_ c 059 10 0x0a 0x00 page_id 10 0x0a 0x02 to 0x07 not used 10 0x0a 0x08 fir_coef_ c 060 10 0x0a 0x0 a fir_coef_ c 061 10 0x0a 0x0c to 0x7c fir_coef_ c 062 to fir_coef_ c 118 10 0x0a 0x7e fir_coef_ c 119 www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 26 of 40 table 74 . filter bank d memory map , fir_coef_ dxxx page page_id address register 11 0x0b 0x00 page_id 11 0x0b 0x02 to 0x07 not used 11 0x0b 0x08 fir_coef_d00 0 11 0x0b 0x0a fir_coef_d00 1 11 0x0b 0x0c to 0x7c fir_coef_d00 2 to fir_coef_d05 8 11 0x0b 0x7e fir_coef_d0 59 12 0x0c 0x00 page_id 12 0x0c 0x02 to 0x07 not used 12 0x0c 0x08 fir_coef_d06 0 12 0x0c 0x0a fir_coef_d06 1 12 0x0c 0x 0c to 0x7c fir_coef_d06 2 to fir_coef_d11 8 12 0x0c 0x7e fir_coef_d1 19 default filter performance the fir filter banks have factory programmed filter designs. they are all low - pass filters that have unity dc gain. table 75 provide s a summary of each filter design , and figure 21 shows the frequency response characteristics. the phase delay is equal to ? of the total number of taps . table 75. fir filter descriptions, default configuration fir filter bank taps ?3 db frequency (hz) a 120 310 b 120 55 c 32 275 d 32 63 no fir filtering 0 ?10 ?20 magnitude (db) ?30 ?40 ?50 ?60 ?70 ?80 ?90 ?100 0 200 400 600 800 1000 1200 frequency (hz) ad c b 10278-021 figure 21 . fir filter frequency re s ponse curves www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 27 of 40 extended k alman f ilter algorithm the e xtended kalman f ilter (ekf) continuously estimates the state vector, which includes the four elements in a quaternion orientation array and the bias levels for all three gyroscopes. figure 22 illustrates the iterative process used in the ekf, which uses a ngu lar rate measurements (gyroscopes) to predict orienta - tion updates and then makes corrections using accel erometer and magnetometer measurements. in addition to continuous state estimation, the ekf also estimates the error covariance term s. using the covar iance terms , current orientation , and gyroscope sensor measurements, the algorithm computes a kalman gain that provides a weighting value for each sensors contribution to the state vector . the ADIS16480 has f actory settings for the c ovariance terms but provides access to them in the form of user - configuration registers, for fine tuning, based on application - specific conditions/requirements. covariance t erms table 76 through table 79 provide s register information for the gyroscope noise /rrw process covariance (q) terms. table 80 through table 83 provides register information for the accelerometer/magnetometer mea surement covariance (r) terms. these covariance terms use the ieee 32- bit floating - point format. each term has two registers, one for the upper word and one for the lower word. table 76. q cvr_ noi s_ upr (page 3, base address = 0x6 2) bits description (default = 0x3 727 ) [15:0] gyroscope noise covariance term, upper word table 77. qcvr_ nois_lwr (page 3, base address = 0x60) bits description (default = 0x c5ac ) [15:0] gyroscope noise covariance term, lower wor d table 78. q cvr_ rrw_ upr (page 3, base address = 0x66) bits description (default = 0x 2e5b ) [15:0] gyroscope rate random walk (rrw) covariance term, upper word table 79. qcvr_rrw_lwr (page 3, base address = 0x64) bits description (default = 0xe 6 ff ) [15:0] gyroscope rate random walk (rrw) covariance term, lower word table 80. r cvr_acc _ upr (page 3, base address = 0x6e ) bits description (default = 0x 3189 ) [15:0] accelerometer measurem ent variance term, upper word table 81. rcvr_acc_lwr (page 3, base address = 0x6c ) bits description (default = 0x 705f ) [15:0] accelerometer measurement variance term, lower word table 82. rcvr_mag_upr (pag e 3, base address = 0x72) bits description (default = 0x32ab ) [15:0] magneto meter measurement variance term, upper word table 83. rcvr_mag_lwr (page 3, base address = 0x70) bits description (default = 0x cc77 ) [15:0] magnetometer measurement variance term, lower word correct predict gyroscope q covariance accelerometers magnetometers r covariance quaternion, bias error covariance quaternion, bias error covariance quaternion ekf process 10278-022 figure 22 . ekf process www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 28 of 40 reference frame during the power - on initialization and reset recovery opera - tions, the ADIS16480 sets the accel erometer and magnetometer references for use in the orientation computation. during this process, the gravity vector beco mes the accelerometer reference and the magnetometer reference computation includes the following steps: measure horizontal and vertica l components of the magnetic field and align the horizontal component to magnetic n orth. this also measures the inclination, which rem oves this requirement from an external system. the resulting reference frame is a local enu inertial frame formed by the y- axis pointing at magnetic n orth, the z- axis pointing up, and the x- axis completing the right - hand frame by pointing east. r eference t ransformation m atrix the reference transformation matrix, r ij , provides a user - programmable alignment function for orie ntation alignment to a local navigation frame. another common name for this function in naviga tion system literature is the c oordinate t ransformation m atrix. ? ? ? ? ? ? ? ? ? ? = rrr rrr rrr ij r 333231 232221 131211 when this matrix is equal to an identify matrix (factory default), the l ocal navigation frame matches true level, with respect to gravity, and magnetic north. the t are command automatically calculates and loads the matrix values that establish the current ADIS16480 orientation as the reference orientation. when the ADIS16480 is in the desired refer ence orientation , initiate the t are command by setting glob_cmd [8] = 1 (din = 0x8003, then din = 0x8301, s ee table 146). each element in this matrix is associated with a register that provides read and write access. see table 84 through table 92, for these registers. use these registers to define the local navigatio n frame, based on system g enerated requirements. each element is the cross product of the unit vectors that describe the axes of the two frames, which are equal to the cosines of the angles between the axes. units of rotation vary by 1. when writing to these registers, write to r33 last because a write to the upper byte of this register causes all nine registers to update inside of the ADIS16480 . table 84. refmtx_ r11 (page 2 , base address = 0x62 ) bits description (default = 0 x7ff f) 15 sign bit [14:0] magnitude, binary, 1 lsb = 1/2 15 table 85. refmtx_ r12 (page 2 , base address = 0x64 ) bits description (default = 0x0000) 15 sign bit [14:0] magnitude, b inary, 1 lsb = 1/2 15 table 86. refmtx_ r13 (page 2 , base address = 0x66 ) bits description (default = 0x0000) 15 sign bit [14:0] magnitude, binary, 1 lsb = 1/2 15 table 87. refmtx_ r21 (page 2 , base address = 0x68 ) bits description (default = 0x0000) 15 sign bit [14:0] magnitude, binary, 1 lsb = 1/2 15 table 88. refmtx_ r22 (page 2 , base address = 0x6a ) bits description (default = 0x 7fff ) 15 sign bit [14:0] magnitude, binary, 1 lsb = 1/2 15 table 89. refmtx_ r23 (page 2 , base address = 0x6c ) bits description (default = 0x0000) 15 sign bit [14:0] magnitude, binary, 1 lsb = 1/2 15 table 90. refmtx_ r31 (page 2 , base address = 0x6e ) bits de scription (default = 0x0000) 15 sign bit [14:0] magnitude, binary, 1 lsb = 1/2 15 table 91. refmtx_ r32 (page 2 , base address = 0x70 ) bits description (default = 0x0000) 15 sign bit [14:0] magnitude, binary, 1 lsb = 1/2 15 table 92. refmtx_ r33 (p age 2 , base address = 0x72 ) bits description (default = 0x 7fff ) 15 sign bit [14:0] magnitude, binary, 1 lsb = 1/2 15 www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 29 of 40 declination the decln_angl register provides a user - programmable input that can shift the refe rence frame from magnetic n orth to geodetic n orth (or any arbitrary azimuth heading). table 93. decln_angl ( page 3, base address = 0x54) bits description (default = 0x000 0) [15:0] declination angle, two s complement scale factor = /2 15 radians/lsb adaptive operation the ekf_cnfg register, in table 94 , offers a number of control bits for customizing ekf operation. table 94 . ekf_cnfg (page 3, base address = 0x50) bits description (de fault = 0x02 00) [15:13] not used 12 automatic reset recovery from divergence 1 = enable, 0 = disable [11: 10 ] not used 9 fade enable 1 = enable, 0 = disable 8 adaptive ekf enable 1 = enable, 0 = disable [7:5] not used 4 orientation format control 1 = rotation matrix , 0 = quaternion and euler 3 body frame enable 1 = enable, 0 = disable 2 not for external use, always set to 0 1 magnetometer d isable 1 = enable, 0 = disable 0 gravity removal (from accelerometers) 1 = enable, 0 = disable adaptive ekf enable bit ekf_cnfg[8] ( s ee table 94 ) provides an on/off control bit for the adaptive part of the ekf function. the adaptive part of the ekf computes the measurement covariance terms (r) , which enables real - time adjustments for vibration and magnetic field disturbances. see table 80 through table 83 for read access to the measurement covariance terms. automatic ekf divergence reset control bit the ekf algorithm monitors the nor maliz ed innovation squared parameter to detect divergence. the normalized innovation is the innovation (predicted measurements minus actual measurements) divided by the statistically computed expected error , which is based on the error covariance and the m easurement covariance. with a moderate level of divergence, the divergence indicator bit ( sys_e_flag[13 ] (s ee table 59 ) is set to a high sta te. at higher levels of divergence , ekf_cnfg[12 ] (s ee table 94 ) provides an on/off control bit for automatically resetting the kalman filter, to help speed recovery from divergence . gyroscope fade control bit ekf_cnfg[ 9 ] (s ee table 94 ) provides an on/off control bit for the g yroscope f ade function, which is an internal adjustment of the g yros c op es process covariance terms . this reduces the impact of gyroscope scale errors during transient events, where the gyroscope rates are quickly changing. the f ade function effectively reduces the weighting of the gyroscope measure - ments, with respect to the accelerometers and magnetometers , during these transient events. the adjustment terminates when the rates return to zero. body frame enable bit ekf_cnfg[3] (see table 94 ) provides an on/off control bit for the body frame enable function. the reference transformation matrix establishes the difference between the local navigation frame and the body frame. set ekf_cnfg[3] = 1 (din = 0x8003, din = 0xd110) to esta blish the body frame as the reference frame. orientation format control bit ekf_cnfg[4] (see table 94 ) provides a selection bit for angle data format. set ekf_cnfg[4] = 1 (din = 0x8003, din = 0xd010) to use the rotation matrix fo rmat. magnetometer disable control bit ekf_cnfg[1] ( s ee table 94 ) provides an on/off control bit for the magnetometer disable function, which disables the magnetometer influence over angle calculations in the ekf. gravity removal control bit ekf_cnfg[0] (s ee table 94 ) provides an on/off control bit for the gravity removal function, which removes the gravity component from the accelerometer outputs. linear acceleration/magnetic disturbance detection the ADIS16480 checks the magnitudes of the accelerometers and magnetometers and compares their values against those of the corresponding reference vectors. if the difference exceeds the percentage programmed in t he disturbance thresholds, the algorithm automatically ignore s the affected sensor group for the duration of the external disturbance. table 95 . acc_distb_thr (page 3, base address = 0x 56 ) bits description (default = 0x00 2 0) [15:8] not used [7:0] threshold, binary, scale factor = 0.39%/lsb ( 50%/128) table 96 . mag_distb_thr (page 3, base address = 0x 58 ) bits description (default = 0x00 3 0) [15:8] not used [7:0] threshold, binary, scale factor = 0.39%/lsb (5 0%/128) www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 30 of 40 calibration the ADIS16480 factory c alibration produces correction formulas for the gyroscope s, accelerometers, magnetometers , and barometer s , and then programs them into the flash memory. in addition, there are a series of user configurable calibration registers, for in - system tuning. g yroscopes the use calibration for the gyroscopes inclu des registers for adjusting bias and sensitivity , as shown in figure 23 . x-axis gyro factory calibration and filtering x_gyro_out x_gyro_low xg_bias_high xg_bias_low 1 + x_gyro_scale 10278-023 figure 23 . user calibration signal path, gyroscopes manual bias correction the x g_bias_high registers (see table 97 , table 98 , and table 99) and x g_bias_low registers (see table 100, table 101 , and table 102) provide a bias adjustment function for the outpu t of each gyro scope sensor. table 97 . xg_bias_high (page 2, base address = 0x12) bits description (default = 0x0000) [15:0] x- axis gyroscope offset correction, upper word twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 98 . yg_bi as_high (page 2, base address = 0x16) bits description (default = 0x0000) [15:0] y- axis gyroscope offset correction, upper word; twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 99 . zg_bias_high (page 2, base address = 0 x1a) bits description (default = 0x0000) [15:0] z- axis gyroscope offset correction, upper word; twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 100 . xg_bias_low (page 2, base address = 0x10) bits description (default = 0x0000) [15:0] x- axis gyroscope offset correction, lower word; twos complement, 0/sec = 0x0000, 1 lsb = 0.02 /sec 2 16 = ~0.000000305/sec table 101 . yg_bias_low (page 2, base address = 0x14) bits description (default = 0x000 0) [15:0] y- axis gyroscope offset correction, lower word; twos complement, 0/sec = 0x0000, 1 lsb = 0.02 /sec 2 16 = ~0.000000305/sec table 102 . zg_bias_low (page 2, base address = 0x18) bits description (default = 0x0000) [ 15:0] z- axis gyroscope offset correction, lower word twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec 2 16 = ~0.000000305/sec manual sensitivity correction the x _gyro_scale registers enable sensitivity adjustment (see tabl e 103, table 104, and table 105 ). table 103 . x_gyro_scale (page 2, base address = 0x 04 ) bits description (default = 0x0000) [15:0] x- axis gyroscope scale correction; twos comple ment, 0x0000 = unity gain, 1 lsb = 1 2 15 = ~0.003052% table 104 . y_gyro_scale (page 2, base address = 0x 06 ) bits description (default = 0x0000) [15:0] y- axis gyroscope scale correction; twos complement, 0x0000 = unity gain, 1 ls b = 1 2 15 = ~0.003052% table 105 . z_gyro_scale (page 2, base address = 0x 08 ) bits description (default = 0x0000) [15:0] z- axis gyroscope scale correction; twos complement, 0x0000 = unity gain, 1 lsb = 1 2 15 = ~0.003052% linea r acceleration on effect on gyroscope bias mems gyroscopes typically have a bias response to linear acceleration that is normal to their axis of rotation. the adis1 6480 offers an optional compensation function for this effect. turn to page 3 (din = 0x8003) and set config[7] = 1 (din = 0x9080, din = 0x9100). the factory defau lt setting for this function is enabled. table 106 . config (page 3, base address = 0x0a) bits description (default = 0x00c0) [15:8] not used 7 linear -g compensation for gyroscopes (1 = enabled) 6 point of percussion alignment (1 = enabled) [5:2] not used 1 real - time clock, daylight savings time (1: enabled, 0: disabl ed) 0 real - time clock control (1: relative/elapsed timer mode, 0: calendar mode) www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 31 of 40 accelerometers the user calibration for the accelerometers includes registers for adjusting bias and sensitivity, as shown in figure 24. x-axis accl factory calibration and filtering x_accl_out x_accl_low xa_bias_high xa_bias_low 1 + x_accl_scale 10278-024 figure 24. user calibration signal path, accelerometers manual bias correction the xa_bias_high registers (see table 107, table 108, and table 109) and xa_bias_low registers (see table 110, table 111, and table 112) provide a bias adjustment function for the output of each gyroscope sensor. the xa_bias_high registers use the same format as x_accl_out registers. the xa_bias_low registers use the same format as x_accl_low registers. table 107. xa_bias_high (page 2, base address = 0x1e) bits description (default = 0x0000) [15:0] x-axis accelerometer offset correction, high word, twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 108. ya_bias_high (page 2, base address = 0x22) bits description (default = 0x0000) [15:0] y-axis accelerometer offset correction, high word, twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 109. za_bias_high (page 2, base address = 0x26) bits description (default = 0x0000) [15:0] z-axis accelerometer offset correction, high word, twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 110. xa_bias_low (page 2, base address = 0x1c) bits description (default = 0x0000) [15:0] x-axis accelerometer offset correction, low word, twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g 2 16 = ~0.0000122 m g table 111. ya_bias_low (page 2, base address = 0x20) bits description (default = 0x0000) [15:0] y-axis accelerometer offset correction, low word, twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g 2 16 = ~0.0000122 m g table 112. za_bias_low (page 2, base address = 0x24) bits description (default = 0x0000) [15:0] z-axis accelerometer offset correction, low word;, twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g 2 16 = ~0.0000122 m g manual sensitivity correction the x_accl_scale registers enable sensitivity adjustment (see table 113, table 114, table 115). table 113. x_accl_scale (page 2, base address = 0x0a) bits description (default = 0x0000) [15:0] x-axis accelerometer scale correction, twos complement, 0x0000 = unity gain, 1 lsb = 1 2 15 = ~0.003052% table 114. y_accl_scale (page 2, base address = 0x0c) bits description (default = 0x0000) [15:0] y-axis accelerometer scale correction, twos complement, 0x0000 = unity gain, 1 lsb = 1 2 15 = ~0.003052% table 115. z_accl_scale (page 2, base address = 0x0e) bits description (default = 0x0000) [15:0] z-axis accelerometer scale correction, twos complement, 0x0000 = unity gain, 1 lsb = 1 2 15 = ~0.003052% magnetometers the user calibration registers enable both hard iron and soft iron correction, as shown in the following relationship: ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? h h h m m m s ss s s s ss s m m m z y x z y x zc yc xc 1 1 1 33 32 31 23 22 21 13 12 11 the m x , m y , and m z variables represent the magnetometer data, prior to application of the user correction formula. the m xc , m yc , and m zc represent the magnetometer data, after the application of the user correction formula. www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 32 of 40 hard iron correction table 116 , table 117, and table 118 describe the register format for the hard iron correction factors: h x , h y , and h z . the se registers use a twos complement format. table 119 provides some numerical examples for converting the digital codes for these registers into their decimal equivalent s. table 116 . hard_iron_x (page 2, base address = 0x28) bits description (default = 0x0000) [15:0] x- axis magnetometer har d iron correction factor, h x twos complement, 3.2767 g auss range, 0.1 mg auss/lsb, 0 g auss = 0x0000 ( s ee table 119 ) table 117 . hard_iron_y (page 2, base address = 0x2a) bits description (default = 0x0000) [15:0] y- axis magnetometer hard iron correction factor, h y twos complement, 3.2767 g auss range, 0.1 mg auss/lsb, 0 g auss = 0x0000 ( s ee table 119 ) table 118 . hard_iron_ z (page 2, base address = 0x2c) bits description (default = 0x0000) [15:0] z- axis magnetometer hard iron correction factor, h z twos complement, 3.2767 g auss range, 0.1 mg auss/lsb, 0 g auss = 0x0000 ( s ee table 119 ) table 119 . hard_iron_x data format examples magnetic field decimal hex binary +3.2767 gauss +32,767 0x7fff 0111 1111 1111 1111 +0.2 mgauss +2 0x0002 0000 0000 0000 0010 +0.1 mgauss +1 0x0001 0000 0000 0000 0001 0 gauss 0 0x0000 0000 0000 0000 0000 ? 0.1 mgauss ?1 0xffff 1111 1111 1111 1111 ? 0.2 mgauss ?2 0xfffe 1111 1111 1111 1110 ? 3.2768 gauss ? 32,768 0x8000 1000 0000 0000 0000 soft iron correction matrix the soft iron correction matrix contains correction factors for both sensitivity (s 11 , s 22 , s 33 ) and alignment (s 12 , s 13 , s 21 , s 23 , s 31 , s 32 ). the registers that represent each soft iron correction factor are in table 120 (s 11 ), table 121 (s 12 ), table 122 (s 13 ), table 123 (s 21 ), table 124 (s 22 ), table 125 (s 23 ), table 126 (s 31 ), table 127 (s 32 ), and table 128 (s 33 ). table 129 offers some numerical examples for converting between the digital codes and their effect on the magnetometer output, in terms of percent - change. table 120 . soft_iron_s11 (page 2, base address = 0x2 e) bits description (default = 0x0000) [15:0] m agnetometer soft iron correction factor, s 11 twos complement format, s ee table 129 for examples table 121 . soft_iron_s12 (page 2, base address = 0x30) bits d escription (default = 0x0000) [15:0] magnetometer soft iron correction factor , s 12 twos complement format, s ee table 129 for examples table 122 . soft_iron_s13 (page 2, base address = 0x32) bits descripti on (default = 0x0000) [15:0] magnetometer soft iron correction factor , s 13 twos complement format, s ee table 129 for examples table 123 . soft_iron_s21 (page 2, base address = 0x34) bits description (defa ult = 0x0000) [15:0] magnetometer soft iron correction factor , s 21 twos complement format, s ee table 129 for examples table 124 . soft_iron_s22 (page 2, base address = 0x36) bits description (default = 0x 0000) [15:0] magnetometer soft iron correction factor , s 22 twos complement format, s ee table 129 for examples table 125 . soft_iron_s23 (page 2, base address = 0x38) bits description (default = 0x0000) [ 15:0] magnetometer soft iron correction factor , s 23 twos complement format, s ee table 129 for examples table 126 . soft_iron_s31 (page 2, base address = 0x3a) bits description (default = 0x0000) [15:0] mag netometer soft iron correction factor , s 31 twos complement format, s ee table 129 for examples table 127 . soft_iron_s32 (page 2, base address = 0x3c) bits description (default = 0x0000) [15:0] magnetometer soft iron correction factor , s 32 twos complement format, s ee table 129 for examples table 128 . soft_iron_s33 (page 2, base address = 0x3e) bits description (default = 0x0000) [15:0] magnetometer soft iro n correction factor , s 33 twos complement format, s ee table 129 for examples table 129 . soft iron correction, numerical examples delta (%) decimal hex binary +100 C 1/2 16 +32,767 0x7fff 0111 1111 1111 1111 +200/2 15 +2 0x0002 0000 0000 0000 0010 +100/2 15 +1 0x0001 0000 0000 0000 0001 0 0 0x0000 0000 0000 0000 0000 ? 100/2 15 ?1 0xffff 1111 1111 1111 1111 ? 200/2 15 ?2 0xfffe 1111 1111 1111 1110 ? 100 ? 32,768 0x8000 1000 0000 0000 0000 www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 33 of 40 b arometers the br_bias_high register (s ee table 130 ) and br_bias_low register ( table 131 ) provide an offset control function and use the same format a s the output registers, barom_out and barom_low. table 130 . br_bias_high (page 2 , base address = 0x42) bits description (default = 0x0000) [15:0] barometric pressure bias correction factor, high word t wos complement, 1.3 bar measurement range, 0 bar = 0x0000, 1 lsb = 40 bar table 131 . br_bias_low (page 2 , base address = 0x40) bits description (default = 0x0000) [15:0] barometric pressure bias correction factor, low word twos complement, 1.3 bar measurement range, 0 bar = 0x0000, 1 lsb = 40 bar 2 16 = ~0.00061 bar rest oring factory calibr ation turn to page 3 (din = 0x8003) and s et glob_cmd [6 ] = 1 (din = 0x 8 240 , din = 0x 8 300 ) to execute the factory calibration restore function. this function resets each user calibration register to zero , resets all sensor data to 0, and automatically updates the flash memory within 72 ms . see table 146 for more information on glob_cmd. point of percussion alignment config [6] offer s a point of percussion alignment function that maps the accelerometer sensor s to the corner of the package identified in figure 25 . t o activate this feature, turn to page 3 (din = 0x8003), then set config [6] = 1 ( din = 0x 8a40 , din = 0x 8b00 ). see table 106 for more information on the config register. pin 1 pin 23 point of percussion alignment reference point. see config[6]. 10278-025 figure 25 . point of percussion reference point www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 34 of 40 alarms each sensor has an independent alarm function that provides controls for alarm magnitude, polarity, and enabling a dynamic rate of change option. the alm_sts register (s ee table 61) contains t he alarm output flags and the f n ctio_ctrl register (s ee table 149 ) provides an option for configuring one of the digital i/o lines as an alarm indicator. static alarm use the static alarm setting compares each sensors output with the trigger settings in the x x _alm_mag n registers (see table 132 through table 141 ) of that sensor. the polarity controls for each a larm are in the alm_c n fg_x registers (see table 142 , table 143 , table 144). the polarity establishes whether gre ater than or less than produces an alarm condition. the com paris on between the x x _alm_mag n value and the output data only applies to the upper word or 16 bits of the output data. dynamic alarm use the dynamic alarm setting provides the option of comparing the change in each sensors output over a period of 48.7 ms with that sensors xx _alm_mag n register. table 132 . x g_ alm_mag n ( page 3, base address = 0x 28 ) bits description (default = 0x0000) [15:0] x- axis g yroscope alarm t hreshold setting s, twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec ta ble 133 . yg_ alm_mag n ( page 3, base address = 0x 2a ) bits description (default = 0x0000) [15:0] y- axis gyroscope alarm threshold settings , twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 134 . zg_ alm _mag n ( page 3, base address = 0x 2c ) bits description (default = 0x0000) [15:0] z- axis gyroscope alarm threshold settings , twos complement, 0/sec = 0x0000, 1 lsb = 0.02/sec table 135 . xa_alm_mag n ( page 3, base address = 0x 2e ) bit s description (default = 0x0000) [15:0] x- axis accelerometer alarm threshold settings , twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 136 . ya_alm_mag n ( page 3, base address = 0x 30 ) bits description (default = 0x0000) [15:0] y- axis accelerometer alarm threshold settings , twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 137 . za_alm_mag n ( page 3, base address = 0x 32 ) bits description (default = 0x0000) [15:0] z- axis accelerometer alarm threshold sett ings , twos complement, 0 g = 0x0000, 1 lsb = 0.8 m g table 138 . xm_alm_mag n (page 3, base address = 0x3 4) bits description (default = 0x0000) [15:0] x- axis magnet ometer alarm threshold settings , twos complement, 0 g auss = 0x0000, 1 lsb = 0.1 m g auss table 139 . ym_alm_mag n (page 3, base address = 0x3 6) bits description (default = 0x0000) [15:0] y- axis magnet ometer alarm threshold settings , twos complement, 0 g auss = 0x0000, 1 lsb = 0.1 m g auss table 140 . zm_alm_mag n (page 3, base address = 0x3 8) bits description (default = 0x0000) [15:0] z - axis magnet ometer alarm threshold settings , twos complement, 0 gauss = 0x0000, 1 lsb = 0.1 m g auss table 141 . br _alm_mag n (page 3, base address = 0x3a) bits description (default = 0x0000) [15:0] z- axis bar ometer alarm threshold settings , twos complement, 0 bar = 0x0000, 1 lsb = 40 bar table 142 . alm_cnfg_0 ( page 3, base address = 0x20 ) bits descrip tion (default = 0x0000) 15 x- axis accelerometer alarm (1 = enabled) 14 not used 13 x- axis accelerometer alarm polarity (1 = greater than) 12 x- axis accelerometer dynamic enable (1 = enabled) 11 z- axis gyroscope alarm (1 = enabled) 10 not used 9 z- ax is gyroscope alarm polarity (1 = greater than) 8 z- axis gyroscope dynamic enable (1 = enabled) 7 y- axis gyroscope alarm (1 = enabled) 6 not used 5 y- axis gyroscope alarm polarity (1 = greater than) 4 y - axis gyroscope dynamic enable (1 = enabled) 3 x- axis gyroscope alarm (1 = enabled) 2 not used 1 x- axis gyroscope alarm polarity (1 = greater than) 0 x- axis gyroscope dynamic enable (1 = enabled) www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 35 of 40 table 143 . alm_cnfg_1 ( page 3, base address = 0x22 ) bits description (default = 0 x0000) 15 y- axis magnetometer alarm (1 = enabled) 14 not used 13 y- axis magnetometer alarm polarity (1 = greater than) 12 y- axis magnetometer dynamic enable (1 = enabled) 11 x- axis magnetometer (1 = enabled) 10 not used 9 x- axis magnetometer alarm polarity (1 = greater than) 8 x- axis magnetometer dynamic enable (1 = enabled) 7 z- axis accelerometer alarm (1 = enabled) 6 not used 5 z- axis accelerometer alarm polarity (1 = greater than) 4 z- axis accelerometer dynamic enable (1 = enabled) 3 y- axis accelerometer alarm (1 = enabled) 2 not used 1 y- axis accelerometer alarm polarity (1 = greater than) 0 y - axis accelerometer dynamic enable (1 = enabled) table 144 . alm_cnfg_2 (page 3, base address = 0x2 4) bits description (defa ult = 0x0000) [15 :8 ] not used 7 barometer alarm (1 = enabled) 6 not used 5 barometer alarm polarity (1 = greater than) 4 barometer dynamic enable (1 = enabled) 3 z- axis magnetometer alarm (1 = enabled) 2 not used 1 z- axis magnetometer alarm polarit y (1 = greater than) 0 z- axis magnetometer dynamic enable (1 = enabled) alarm example table 145 of fers an alarm configuration example, which sets the z- axis gyroscope alarm to trip when z _gyro_out > 131.1/sec (0x 199b ). ta ble 145 . alarm configuration example din description 0x ac9b set zg _alm_mag n [7:0] = 0x 9b 0x ad19 set zg _alm_mag n [15:8] = 0x 19 0xa000 set alm_cnfg_0 [7:0] = 0x00 0xa10a set alm_cnfg_0 [15:8] = 0x0 a www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 36 of 40 system controls the ADIS16480 provides a number of system level controls for managing its operation , which include reset, self - test, calibration, memory management, and i/o configuration. global commands the glob_cmd register (see table 146 ) provides trigger bits for several operations. write 1 to the appropriate bit in glob_cmd to start a function. after the function completes, the bit restores to 0. table 146 . glob_cmd ( page 3, base address = 0x02 ) bits description execution time 15 ekf reset 1.7 seconds [14:10] not used not applicable 9 reset the reference rotation matrix 1 sample period 8 tare command 1 sample period 7 software reset 82 ms 6 factory calibration restore 1 sample period [5:4] not used not applicable 3 flash memory update 1100 ms 2 flash memory test 53 ms 1 self- test 12 ms 0 not used n/a software reset tu r n t o p age 3 (din = 0x8003) and then s et glob_cmd[7] = 1 (din = 0x 8280, din = 0x8300 ) to reset the operation, which removes all data, initializes all registers from their flash settings, and starts data collection. this function provides a firmware alternative to the rst line ( s ee table 5 , p in 8). automatic self - test tu r n t o page 3 (din = 0x8003) and then set glob_cmd[1] = 1 (din = 0x820 2, then din = 0x8300 ) to run an automatic self - test routine, which executes the following steps: 1. measure output on each sensor . 2. ac tivate self- test on each sensor . 3. measure output on each sensor . 4. de activate the self - test on each sensor . 5. calculate the difference with self - test on and off . 6. compare the difference w ith internal pass/fail criteria . 7. report the pass/fail results for each sens or in diag_sts . after waiting 12 ms for this test to complete, turn to p age 0 (din = 0x8000) and read diag_sts using din = 0x0a00. note that using an external clock can extend this time. when using an external clock of 100 hz, this time extends to 35 ms. n ote that 100 hz is too slow for optimal sensor performance . memory management the data retention of the flash memory depends on the tempera - ture and the number of write cycles. figure 26 characterizes the dependence on temper ature , and the flshcnt_low and flshcnt_high registers (see table 147 and table 148) provide a running count of flash write cycles. the flash updates every time glob_cmd[6] or glob_cmd[3] is set to 1. ta ble 147 . flshcnt_low ( page 2, base address = 0x7 c) bits description [15:0] binary counter; number of flash updates , lower word table 148 . flshcnt_high ( page 2, base address = 0x7 e) bits description [15:0] binary counter; number of flash updates, upper word 600 450 300 150 0 30 40 retention (years) junction temperature (c) 55 70 85 100 125 135 150 10278-026 figure 26 . flash memory retention flash memory test tu r n t o p age 3 (din = 0x8003), and then set glob_ cmd[2] = 1 (din = 0x820 4, din = 0x8300 ) to run a check sum test of the inter nal flash memory, which compares a factory programmed value with the current sum of the same memory locations. the result of this test loads into sys_e_flag[6]. tu rn to p age 0 (din = 0x8000) and use din = 0x0800 to read sys_e_flag . www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 37 of 40 general - purpose i/o ther e are four general - purpose i/o lines : dio1 , dio2, dio3 , and dio4. the fn ct io_ctrl register controls the basic function of each i/o line . each i/o line only support s one function at a time . in cases where a single line has two different assignments, the ena ble bit for the lower priority function automatically re set s to zero and is disabled. the priority is (1) data - ready, (2) sync clock input, (3) alarm indicator , and (4) general - purpose, where 1 ident ifies the highest priority and 4 indicates the lowest pri ority. table 149 . fnc t io_ctrl ( page 3, base address = 0x06 ) bits description (default = 0x000 d) [15:12] not used 11 alarm indicator: 1 = enabled, 0 = disabled 10 alarm indicator polarity: 1 = positive, 0 = negative [9:8] alarm indicator line selection: 00 = dio1, 01 = dio2, 10 = dio3, 11 = dio4 7 sync clock input enable: 1 = enabled, 0 = disabled 6 sync clock input polarity: 1 = rising edge, 0 = falling edge [5:4] sync clock input line selection: 00 = dio1, 01 = dio2, 10 = dio3, 11 = dio4 3 data - ready enable: 1 = enabled, 0 = disabled 2 data - ready polarity: 1 = positive, 0 = negative [1:0] data - ready line selection: 00 = dio1, 01 = dio2, 10 = dio3, 11 = dio4 data- ready i ndicator fnc t io_ctrl [3 :0] provide some configurati on options for using one of the diox lines as a data - ready indicator signal, which can drive a processors interrupt control line. the factory default assigns dio2 as a positive polarity, data - ready signal. use the following sequence to change this assignm ent to dio1 with a negative polarity: t urn to p age 3 (din = 0x8003) and set fnc t io_ c trl[3:0] = 1000 (din = 0x 8608 , then din = 0x8700 ). the timing jitter on the data - ready signal is 1.4 s. input sync/clock control fnc t io_ctrl [7:4] provide some configurati on options for using one of the diox lines as an input synchronization signal for sampling inertial sensor data. for example, use the following sequence to establish dio4 as a positive polarity, input clock pin and keep the factory default setting for the data - ready function: turn to p age 3 (din = 0x8003) and set fnc t io_ctrl [7: 0 ] = 0xfd (din = 0x86fd , then din = 0x8700 ). note that this command also disables the internal sampling clock , and no data sampling takes place without the input clock signal. when selecting a clock input frequency , conside r the 330 hz sensor bandwidth, because under sampling the sensors can degrade noise and stability performance. general -p urpose i/o control when fnc t io_ctrl does not configure a diox pin, gpio_ctrl provides regis ter controls for general - purpose use of the pin. gpio_ctrl[3:0] provides input/output assignment controls for each line. when the diox lines are inputs, monitor their level s by reading gpio_ctrl[7:4]. when the diox lines are used as outputs, set their leve ls by writing to gpio_ctrl[7:4]. for example, use the following sequence to set dio1 and dio3 as high and low output lines , respectively , and set dio2 and dio4 as input lines . t urn to p age 3 (din = 0x8003) and set gpio_ctrl[ 7 :0] = 0x15 (din = 0x88 15 , then din = 0x8900 ). table 150 . gpio_ctrl ( page 3, base address = 0x08 ) bits description (default = 0x00 x 0) 1 [15: 8] dont care 7 general - purpose i/o line 4 (dio 4 ) data level 6 general - purpose i/o line 3 (dio 3 ) data level 5 gen eral - purpose i/o line 2 (dio2) data level 4 general - purpose i/o line 1 (dio1) data level 3 general - purpose i/o line 4 (dio 4 ) direction control (1 = output, 0 = input) 2 general - purpose i/o line 3 (dio 3 ) direction control (1 = output, 0 = input) 1 gene ral - purpose i/o line 2 (dio2) direction control (1 = output, 0 = input) 0 general - purpose i/o line 1 (dio1) direction control (1 = output, 0 = input) 1 gpio_ctrl[7:4] reflect s levels on diox lines. power management the slp_cnt register (see table 151 ) provides controls for both power - down mode and sleep mode. the trade - off between power - down mode and sleep mode is between idle power and recovery time. power - down mode offers the best idle power consumption but requires the most time to recover. also, all volatile settings are lost during power - down but are preserved during sleep mode. for timed sleep mode, turn to p age 3 (din = 0x8003) , write the amount of sleep time to slp_cnt [7:0] and then, set slp_cnt [8 ] = 1 (din = 0x 910 1 ) to start the sleep period . for a timed power - down period, change the last command to set slp_cnt [9] = 1 (din = 0x9102). to power down or sleep for an indefinite period, set slp_cnt [7:0] = 0x00 first, then set either slp_cnt [8] or slp_cnt [9] to 1. note t hat the command takes effect when the cs line goes high. to awaken the device from sleep or power - down mode, use one of the following options to restore normal operation: ? assert cs from high to low. ? pulse rst low , then high again . ? cycle the power . www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 38 of 40 for example, set slp_cnt [7:0] = 0x 6 4 (din = 0x 9064 ) , then set slp_cnt [8] = 1 (din = 0x9101) to start a sleep period of 100 seconds. table 151 . slp_cnt ( page 3, base address = 0x10 ) b its description [15: 10 ] not used 9 power - down mode 8 normal sleep mode [7:0] p rogrammable time bits; 1 sec/lsb ; 0x00 = indefinite if the sleep mode and power - down mode bits are both set high, the normal sleep mode ( slp_cnt [8]) bit take s precedence. ge neral- purpose registers the user_scr_x registers ( s ee table 152, table 153, table 154, and table 155 ) provide four 16 - bit registers for storing data. t able 152 . user_scr_1 (page 2, base address = 0x74) bits description [15:0] user - defined table 153 . user_scr_2 (page 2, base address = 0x76) bits description [15:0] user - defined table 154 . user_scr_3 (page 2, base address = 0x78) bits description [15:0] user - defined table 155 . user_scr_4 (page 2, base address = 0x7a) bits description [15:0] user - defined real - time clock configuration/data the vddrtc power s upply pin (see table 5 , pin 23 ) provides a separate supply for the real - time clock (rtc) function. this enables the rtc to keep track of time, even when the main supply (vdd) is off. configure the rtc function by selecting one o f two modes in config [0] (see table 106 ). the real - time clock data is available in the time_ms_out register (see table 156 ), time_dh_ out register (see table 157 ), and time_ym_ out register (see table 158 ). when using the elapsed timer mode, the time data registers start at 0x0000 when the device starts up (or resets) and begin keeping time in a manner that is similar to a stopwatch. when using the clo ck/calendar mode, write the current time to the real - time registers in the following sequence: seconds (time_ms_out[ 5 :0]), minutes (time_ ms_out[ 13 :8]), hours (time_dh_out[ 5 :0]), day (time_dh_out[ 12 :8]), month (time_ym_out[ 3 :0]), and year (time_ym_out[ 14 :8]). the updates to the timer do not become active until there is a successful write to the time_ ym_out[ 14 :8] byte. the real - time clock registers reflect the newly updated values only after the next seconds tick of the clock that follows the write to ti me_ym_out[ 14 :8] (year). writing to time_ ym_out[ 14 :8] activates all timing values; therefore, always write to this location last when updating the timer, even if the year information does not require updating. write the current time to each time data register after setting config [0] = 1 (din = 0x8003, din = 0x8a01). note that config [1] provides a bit for managing daylight savings time. after the config and time_xx_out registers are configured, set glob_cmd[3] = 1 (di n = 0x8003, din = 0x8208 , din = 0x8300 ) to back up these settings in flash, and use a separate 3.3 v source to supply power to the vddrtc function. note that access to time data in the time_xx_out registers requires normal operation (vdd = 3.3 v and full startup), but the timer function only requires that vddrtc = 3.3 v when the rest of the ADIS16480 is turned off. table 156 . time_ms_out (page 0, base address = 0x7 8) bits descrip tion [15:14] not used [13:8] minutes, binary data, range = 0 to 59 [7:6] not used [5:0] seconds, binary data, range = 0 to 59 table 157 . time_dh_out (page 0, base address = 0x7 a) bits description [15:13] not used [12:8] day , binary data, range = 1 to 31 [7:6] not used [5:0] hours, binary data, range = 0 to 23 table 158 . time_ym_out (page 0, base address = 0x7 c) bits description [15] not used [14:8] year, binary data, range = 0 to 99, relative to 2000 a.d. [7:4] not used [3:0] month, binary data, range = 1 to 12 www.datasheet.co.kr datasheet pdf - http://www..net/
data sheet ADIS16480 rev. 0 | page 39 of 40 applications information prototype interface board the ADIS16480/pcbz includes one ADIS16480amlz , one interface printed circuit board (pcb), and four m2 0.4 18 mm machine screws. the interface pcb provides four holes for ADIS16480amlz attachment and four larger holes for attaching the interface pcb to another surface. the ADIS16480amlz attachment holes are pre-tapped for m2 0.4 mm machine screws and the fo ur larger holes, located in each corner, support attachment with m2.5 or #4 machine screws. j1 is a dual row, 2 mm (pitch) connector that works with a number of ribbon cable systems, including 3m part number 152212-0100-gb (ribbon crimp connector) and 3m part number 3625/12 (ribbon cable). note that j1 has 16 pads but currently uses a 12-pin connector. the extra pins accommodate future evaluation system plans. figure 28 provides the pin assignments for j1. the pin descriptions match those listed in table 5. the c1 and c2 locations provide solder pads for extra capacitors, which can provide additional filtering for start-up transients and supply noise. ADIS16480 mounting holes 6.35mm 58.42mm 64.77mm 66.04mm 59.69mm 6.35mm 1.65mm 11.30mm 10278-027 figure 27. physical diagram for the ADIS16480/pcbz 1 rst 2sclk 3 cs 4dout 5 dnc 6din 7 gnd 8gnd 9 gnd 10 vdd 11 vdd 12 vdd 13 dio1 14 dio2 15 dio3 16 dio4 j1 10278-028 figure 28. ADIS16480/pcbz j1 pin assignments installation tips figure 29 and figure 30 provide the mechanical design information used for the ADIS16480/pcbz . use these figures when implementing a connector-down approach, where the mating connector and the ADIS16480amlz are on the same surface. when designing a connector-up system, use the mounting holes shown in figure 29 as a guide in designing the bulkhead mounting system and use figure 30 as a guide in developing the mating connector interface on a flexible circuit or other connector system. the suggested torque setting for the attachment hardware is 40 inch-ounces, or 0.2825 n-m. 0.560 bsc 2 alignment holes for mating socket 2.500 bsc 4 19.800 bsc 39.600 bsc 42.600 21.300 bsc 5 bsc 5 bsc 1.642 bsc notes 1. all dimensions in mm units. 10278-029 figure 29. suggested mounting hole locations, connector down 0.4334 [11.0] 0.0240 [0.610] 0.019685 [0.5000] (typ) 0.054 [1.37] 0.0394 [1.00] 0.0394 [1.00] 0.1800 [4.57] nonplated thru hole 2 0.022 dia (typ) 0.022 dia thru hole (typ) nonplated thru hole 10278-030 figure 30. suggested layout and mechanical design for the mating connector www.datasheet.co.kr datasheet pdf - http://www..net/
ADIS16480 data sheet rev. 0 | page 40 of 40 outline dimensions 03-28-2012-c bottom view front view 44.254 44.000 43.746 42.80 42.60 42.30 0.069 0.054 0.039 47.254 47.000 46.746 14.200 14.000 13.800 39.854 39.600 39.346 19.20 19.80 19.40 ? 2.40 bsc (4 plcs) 15.00 bsc 8.25 bsc 2.20 bsc detail a detail b 5.50 bsc 5.50 bsc 1.00 bsc 2.84 bsc 6.50 bsc detail a detail b 1.00 bsc pitch 0.30 sq bsc 3.454 3.200 2.946 figure 31 . 24 - le ad module with connector interface [module] (ml - 24 -6) dimensions shown in millimeters ordering guide model 1 , 2 temperature range package description package option ADIS16480 a mlz ? 40c to + 85c 24- lead module with connector interface [module] ml -24 -6 ADIS16480 /pcbz interface pcb 1 z = rohs compliant part. 2 the ADIS16480/pcbz includes one ADIS16480amlz and one interface board pcb. see figure 27 for more information on the interface pcb. ? 2012 analog devices, inc. all rights reserved. trademarks and registered trademarks are the property of their respective owners. d10278 -0- 5/12(0) www.datasheet.co.kr datasheet pdf - http://www..net/


▲Up To Search▲   

 
Price & Availability of ADIS16480

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X